3 resultados para COLLOIDAL GOLD PARTICLES

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal self assembly is an efficient method for making 3-D ordered nanostructures suitable for materials such as photonic crystals and macroscopic solids for catalysis and sensor applications. Colloidal crystals grown by convective methods exhibit defects on two different scales. Macro defects such as cracks and void bands originate from the dynamics of meniscus motion during colloidal crystal growth while micro defects like vacancies, dislocation and stacking faults are indigenous to the colloidal crystalline structure. This paper analyses the crystallography and energetics of the microscopic defects from the point of view of classical thermodynamics and discusses the strategy for the control of the macroscopic defects through optimization of the liquid-vapor interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone morphogenetic protein-2 (BMP-2) has the ability to induce osteoblast differentiation of undifferentiated cells, resulting in the healing of skeletal defects when delivered with a suitable carrier. We have applied a versatile delivery platform comprising a novel composite of two biomaterials with proven track records – apatite and poly(lactic-co-glycolic acid) (PLGA) – to the delivery of BMP-2. Sustained release of this growth factor was tuned with variables that affect polymer degradation and/or apatite dissolution, such as polymer molecular weight, polymer composition, apatite loading, and apatite particle size. The effect of released BMP-2 on C3H10T1/2 murine pluripotent mesenchymal cells was assessed by tracking the expression of osteoblastic makers, alkaline phosphatase (ALP) and osteocalcin. Release media collected over 100 days induced elevated ALP activity in C3H10T1/2 cells. The expression of osteocalcin was also upregulated significantly. These results demonstrated the potential of apatite-PLGA composite particles for releasing protein in bioactive form over extended periods of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much effort has been devoted to the synthesis of gold nanoparticles with different shapes, including the zero-dimensional nanospheres, one dimensional nanorods, and two-dimensional nanoplates. Compared to zero or one dimensional nanostructures, the synthesis of two-dimensional nanostructures in high yield has always been more involved, often requiring complex and time-consuming steps such as morphology transformation from the nanospheres, or the seeded growth process. Herein we report a high yield method for gold nanoplate synthesis using the extract of unicellular green alga Chlorella vulgaris, which can be carried out under ambient conditions. More than 90% of the total nanoparticle population is of the platelet morphology, surpassing the previously reported value of 45%. The control of the anisotropic growth of different planes; as well as the lateral size, has also been partially optimized.