5 resultados para CMOS analog integrated circuit
em Massachusetts Institute of Technology
Resumo:
One of the most prominent industrial applications of heat transfer science and engineering has been electronics thermal control. Driven by the relentless increase in spatial density of microelectronic devices, integrated circuit chip powers have risen by a factor of 100 over the past twenty years, with a somewhat smaller increase in heat flux. The traditional approaches using natural convection and forced-air cooling are becoming less viable as power levels increase. This paper provides a high-level overview of the thermal management problem from the perspective of a practitioner, as well as speculation on the prospects for electronics thermal engineering in years to come.
Resumo:
The dynamic power requirement of CMOS circuits is rapidly becoming a major concern in the design of personal information systems and large computers. In this work we present a number of new CMOS logic families, Charge Recovery Logic (CRL) as well as the much improved Split-Level Charge Recovery Logic (SCRL), within which the transfer of charge between the nodes occurs quasistatically. Operating quasistatically, these logic families have an energy dissipation that drops linearly with operating frequency, i.e., their power consumption drops quadratically with operating frequency as opposed to the linear drop of conventional CMOS. The circuit techniques in these new families rely on constructing an explicitly reversible pipelined logic gate, where the information necessary to recover the energy used to compute a value is provided by computing its logical inverse. Information necessary to uncompute the inverse is available from the subsequent inverse logic stage. We demonstrate the low energy operation of SCRL by presenting the results from the testing of the first fully quasistatic 8 x 8 multiplier chip (SCRL-1) employing SCRL circuit techniques.
Resumo:
Three dimensional (3-D) integrated circuits can be fabricated by bonding previously processed device layers using metal-metal bonds that also serve as layer-to-layer interconnects. Bonded copper interconnects test structures were created by thermocompression bonding and the bond toughness was measured using the four-point test. The effects of bonding temperature, physical bonding and failure mechanisms were investigated. The surface effects on copper surface due to pre-bond clean (with glacial acetic acid) were also looked into. A maximum average bond toughness of approximately 35 J/m² was obtained bonding temperature 300 C.
Resumo:
We address the problem of jointly determining shipment planning and scheduling decisions with the presence of multiple shipment modes. We consider long lead time, less expensive sea shipment mode, and short lead time but expensive air shipment modes. Existing research on multiple shipment modes largely address the short term scheduling decisions only. Motivated by an industrial problem where planning decisions are independent of the scheduling decisions, we investigate the benefits of integrating the two sets of decisions. We develop sequence of mathematical models to address the planning and scheduling decisions. Preliminary computational results indicate improved performance of the integrated approach over some of the existing policies used in real-life situations.
Resumo:
This paper considers a connection between the deterministic and noisy behavior of nonlinear networks. Specifically, a particular bridge circuit is examined which has two possibly nonlinear energy storage elements. By proper choice of the constitutive relations for the network elements, the deterministic terminal behavior reduces to that of a single linear resistor. This reduction of the deterministic terminal behavior, in which a natural frequency of a linear circuit does not appear in the driving-point impedance, has been shown in classical circuit theory books (e.g. [1, 2]). The paper shows that, in addition to the reduction of the deterministic behavior, the thermal noise at the terminals of the network, arising from the usual Nyquist-Johnson noise model associated with each resistor in the network, is also exactly that of a single linear resistor. While this result for the linear time-invariant (LTI) case is a direct consequence of a well-known result for RLC circuits, the nonlinear result is novel. We show that the terminal noise current is precisely that predicted by the Nyquist-Johnson model for R if the driving voltage is zero or constant, but not if the driving voltage is time-dependent or the inductor and capacitor are time-varying