1 resultado para CLASS-2 INTEGRONS
em Massachusetts Institute of Technology
Filtro por publicador
- Rhode Island School of Design (4)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Aston University Research Archive (18)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (79)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Biodiversity Heritage Library, United States (2)
- Bioline International (1)
- Blue Tiger Commons - Lincoln University - USA (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (46)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (15)
- CentAUR: Central Archive University of Reading - UK (36)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (21)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (4)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (8)
- DigitalCommons@The Texas Medical Center (9)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- Duke University (3)
- Escola Superior de Educação de Paula Frassinetti (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Glasgow Theses Service (1)
- Harvard University (7)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico de Santarém (3)
- Instituto Politécnico do Porto, Portugal (4)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (51)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (31)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (39)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (3)
- Repositório da Produção Científica e Intelectual da Unicamp (32)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (165)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (23)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (6)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universidade Metodista de São Paulo (10)
- Universidade Técnica de Lisboa (4)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (72)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (1)
- University of Michigan (102)
- University of Queensland eSpace - Australia (28)
- University of Southampton, United Kingdom (3)
- University of Washington (1)
Resumo:
There are numerous text documents available in electronic form. More and more are becoming available every day. Such documents represent a massive amount of information that is easily accessible. Seeking value in this huge collection requires organization; much of the work of organizing documents can be automated through text classification. The accuracy and our understanding of such systems greatly influences their usefulness. In this paper, we seek 1) to advance the understanding of commonly used text classification techniques, and 2) through that understanding, improve the tools that are available for text classification. We begin by clarifying the assumptions made in the derivation of Naive Bayes, noting basic properties and proposing ways for its extension and improvement. Next, we investigate the quality of Naive Bayes parameter estimates and their impact on classification. Our analysis leads to a theorem which gives an explanation for the improvements that can be found in multiclass classification with Naive Bayes using Error-Correcting Output Codes. We use experimental evidence on two commonly-used data sets to exhibit an application of the theorem. Finally, we show fundamental flaws in a commonly-used feature selection algorithm and develop a statistics-based framework for text feature selection. Greater understanding of Naive Bayes and the properties of text allows us to make better use of it in text classification.