4 resultados para CHEMICAL STRUCTURES

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kineticist's Workbench is a computer program currently under development whose purpose is to help chemists understand, analyze, and simplify complex chemical reaction mechanisms. This paper discusses one module of the program that numerically simulates mechanisms and constructs qualitative descriptions of the simulation results. These descriptions are given in terms that are meaningful to the working chemist (e.g., steady states, stable oscillations, and so on); and the descriptions (as well as the data structures used to construct them) are accessible as input to other programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present success in the manufacture of multi-layer interconnects in ultra-large-scale integration is largely due to the acceptable planarization capabilities of the chemical-mechanical polishing (CMP) process. In the past decade, copper has emerged as the preferred interconnect material. The greatest challenge in Cu CMP at present is the control of wafer surface non-uniformity at various scales. As the size of a wafer has increased to 300 mm, the wafer-level non-uniformity has assumed critical importance. Moreover, the pattern geometry in each die has become quite complex due to a wide range of feature sizes and multi-level structures. Therefore, it is important to develop a non-uniformity model that integrates wafer-, die- and feature-level variations into a unified, multi-scale dielectric erosion and Cu dishing model. In this paper, a systematic way of characterizing and modeling dishing in the single-step Cu CMP process is presented. The possible causes of dishing at each scale are identified in terms of several geometric and process parameters. The feature-scale pressure calculation based on the step-height at each polishing stage is introduced. The dishing model is based on pad elastic deformation and the evolving pattern geometry, and is integrated with the wafer- and die-level variations. Experimental and analytical means of determining the model parameters are outlined and the model is validated by polishing experiments on patterned wafers. Finally, practical approaches for minimizing Cu dishing are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present success in the manufacture of multi-layer interconnects in ultra-large-scale integration is largely due to the acceptable planarization capabilities of the chemical-mechanical polishing (CMP) process. In the past decade, copper has emerged as the preferred interconnect material. The greatest challenge in Cu CMP at present is the control of wafer surface non-uniformity at various scales. As the size of a wafer has increased to 300 mm, the wafer-level non-uniformity has assumed critical importance. Moreover, the pattern geometry in each die has become quite complex due to a wide range of feature sizes and multi-level structures. Therefore, it is important to develop a non-uniformity model that integrates wafer-, die- and feature-level variations into a unified, multi-scale dielectric erosion and Cu dishing model. In this paper, a systematic way of characterizing and modeling dishing in the single-step Cu CMP process is presented. The possible causes of dishing at each scale are identified in terms of several geometric and process parameters. The feature-scale pressure calculation based on the step-height at each polishing stage is introduced. The dishing model is based on pad elastic deformation and the evolving pattern geometry, and is integrated with the wafer- and die-level variations. Experimental and analytical means of determining the model parameters are outlined and the model is validated by polishing experiments on patterned wafers. Finally, practical approaches for minimizing Cu dishing are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amphiphilic polymers are a class of polymers that self-assemble into different types of microstructure, depending on the solvent environment and external stimuli. Self assembly structures can exist in many different forms, such as spherical micelles, rod-like micelles, bi-layers, vesicles, bi-continuous structure etc. Most biological systems are basically comprised of many of these organised structures arranged in an intelligent manner, which impart functions and life to the system. We have adopted the atom transfer radical polymerization (ATRP) technique to synthesize various types of block copolymer systems that self-assemble into different microstructure when subject to an external stimuli, such as pH or temperature. The systems that we have studied are: (1) pH responsive fullerene (C60) containing poly(methacrylic acid) (PMAA-b-C60); (2) pH and temperature responsive fullerene containing poly[2-(dimethylamino)ethyl methacrylate] (C₆₀-b-PDMAEMA); (3) other responsive water-soluble fullerene systems. By varying temperature, pH and salt concentration, different types microstructure can be produced. In the presence of inorganic salts, fractal patterns at nano- to microscopic dimension were observed for negatively charged PMAA-b-C60, while such structure was not observed for positively charged PDMAEMA-b-C60. We demonstrated that negatively charged fullerene containing polymeric systems can serve as excellent nano-templates for the controlled growth of inorganic crystals at the nano- to micrometer length scale and the possible mechanism was proposed. The physical properties and the characteristics of their self-assembly properties will be discussed, and their implications to chemical and biomedical applications will be highlighted.