2 resultados para Business Value Two-Layer Model
em Massachusetts Institute of Technology
Resumo:
We contribute a quantitative and systematic model to capture etch non-uniformity in deep reactive ion etch of microelectromechanical systems (MEMS) devices. Deep reactive ion etch is commonly used in MEMS fabrication where high-aspect ratio features are to be produced in silicon. It is typical for many supposedly identical devices, perhaps of diameter 10 mm, to be etched simultaneously into one silicon wafer of diameter 150 mm. Etch non-uniformity depends on uneven distributions of ion and neutral species at the wafer level, and on local consumption of those species at the device, or die, level. An ion–neutral synergism model is constructed from data obtained from etching several layouts of differing pattern opening densities. Such a model is used to predict wafer-level variation with an r.m.s. error below 3%. This model is combined with a die-level model, which we have reported previously, on a MEMS layout. The two-level model is shown to enable prediction of both within-die and wafer-scale etch rate variation for arbitrary wafer loadings.
Resumo:
We explore representation of 3D objects in which several distinct 2D views are stored for each object. We demonstrate the ability of a two-layer network of thresholded summation units to support such representations. Using unsupervised Hebbian relaxation, we trained the network to recognise ten objects from different viewpoints. The training process led to the emergence of compact representations of the specific input views. When tested on novel views of the same objects, the network exhibited a substantial generalisation capability. In simulated psychophysical experiments, the network's behavior was qualitatively similar to that of human subjects.