1 resultado para Building Information Modelling
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (7)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Aquatic Commons (3)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (8)
- Biblioteca de Teses e Dissertações da USP (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (55)
- CentAUR: Central Archive University of Reading - UK (84)
- Center for Jewish History Digital Collections (21)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Cochin University of Science & Technology (CUSAT), India (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (14)
- Digital Commons - Michigan Tech (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (13)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (13)
- Helda - Digital Repository of University of Helsinki (24)
- Indian Institute of Science - Bangalore - Índia (11)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (5)
- Massachusetts Institute of Technology (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (72)
- Queensland University of Technology - ePrints Archive (455)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- South Carolina State Documents Depository (2)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (7)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (7)
- University of Michigan (7)
- University of Queensland eSpace - Australia (10)
- University of Southampton, United Kingdom (3)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This thesis develops an approach to the construction of multidimensional stochastic models for intelligent systems exploring an underwater environment. It describes methods for building models by a three- dimensional spatial decomposition of stochastic, multisensor feature vectors. New sensor information is incrementally incorporated into the model by stochastic backprojection. Error and ambiguity are explicitly accounted for by blurring a spatial projection of remote sensor data before incorporation. The stochastic models can be used to derive surface maps or other representations of the environment. The methods are demonstrated on data sets from multibeam bathymetric surveying, towed sidescan bathymetry, towed sidescan acoustic imagery, and high-resolution scanning sonar aboard a remotely operated vehicle.