2 resultados para Branch and bounds
em Massachusetts Institute of Technology
Resumo:
We present techniques for computing upper and lower bounds on the likelihoods of partial instantiations of variables in sigmoid and noisy-OR networks. The bounds determine confidence intervals for the desired likelihoods and become useful when the size of the network (or clique size) precludes exact computations. We illustrate the tightness of the obtained bounds by numerical experiments.
Resumo:
Alignment is a prevalent approach for recognizing 3D objects in 2D images. A major problem with current implementations is how to robustly handle errors that propagate from uncertainties in the locations of image features. This thesis gives a technique for bounding these errors. The technique makes use of a new solution to the problem of recovering 3D pose from three matching point pairs under weak-perspective projection. Furthermore, the error bounds are used to demonstrate that using line segments for features instead of points significantly reduces the false positive rate, to the extent that alignment can remain reliable even in cluttered scenes.