2 resultados para Block infraorbital nerve
em Massachusetts Institute of Technology
Resumo:
Well-defined, water-soluble, pH and temperature stimuli-responsive [60]fullerene (C₆₀) containing ampholytic block copolymer of poly((methacrylic acid)-block-(2-(dimethylamino)ethyl methacrylate))-block–C₆₀ (P(MAA-b-DMAEMA)-b-C₆₀) was synthesized by the atom transfer radical polymerization (ATRP) technique. The self-assembly behaviour of the C₆₀ containing polyampholyte in aqueous solution was characterized by dynamic light scattering (DLS), and transmission electron microscopy. This amphiphilic mono-C₆₀ end-capped block copolymer shows enhanced solubility in aqueous medium at room and elevated temperatures and at low and high pH but phase-separates at intermediate pH of between 5.4 and 8.8. The self assembly of the copolymer is different from that of P(MAA-b-DMAEMA). Examination of the association behavior using DLS revealed the co-existence of unimers and aggregates at low pH at all temperatures studied, with the association being driven by the balance of hydrophobic and electrostatic interactions. Unimers and aggregates of different microstructures are also observed at high pH and at temperatures below the lower critical solution temperature (LCST) of PDMAEMA. At high pH and at temperatures above the LCST of PDMAEMA, the formation of micelles and aggregates co-existing in solution is driven by the combination of hydrophobic, electrostatic, and charge-transfer interactions.
Resumo:
Poly(acrylic acid) (PAA) was grafted onto both termini of Pluronic F87 (PEO₆₇-PPO₃₉-PEO₆₇) via atom transfer radical polymerization to produce a novel muco-adhesive block copolymer PAA₈₀-b-F₈₇-b-PAA₈₀. It was observed that PAA₈₀-F₈₇-PAA₈₀ forms stable complexes with weakly basic anti-cancer drug, Doxorubicin. Thermodynamic changes due to the drug binding to the copolymer were assessed at different pH by isothermal titration calorimetry (ITC). The formation of the polymer/drug complexes was studied by turbidimetric titration and dynamic light scattering. Doxorubicin and PAA-b-F87-b-PAA block copolymer are found to interact strongly in aqueous solution via non-covalent interactions over a wide pH range. At pH>4.35, drug binding is due to electrostatic interactions. Hydrogen-bond also plays a role in the stabilization of the PAA₈₀-F₈₇-PAA₈₀/DOX complex. At pH 7.4 (α=0.8), the size and stability of polymer/drug complex depend strongly on the doxorubicin concentration. When CDOX <0.13mM, the PAA₈₀-F₈₇-PAA₈₀ copolymer forms stable inter-chain complexes with DOX (110 ~ 150 nm). When CDOX >0.13mM, as suggested by the light scattering result, the reorganization of the polymer/drug complex is believed to occur. With further addition of DOX (CDOX >0.34mM), sharp increase in the turbidity indicates the formation of large aggregates, followed by phase separation. The onset of a sharp enthalpy increase corresponds to the formation of a stoichiometric complex.