4 resultados para Blindness monocular

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

When stimuli presented to the two eyes differ considerably, stable binocular fusion fails, and the subjective percept alternates between the two monocular images, a phenomenon known as binocular rivalry. The influence of attention over this perceptual switching has long been studied, and although there is evidence that attention can affect the alternation rate, its role in the overall dynamics of the rivalry process remains unclear. The present study investigated the relationship between the attention paid to the rivalry stimulus, and the dynamics of the perceptual alternations. Specifically, the temporal course of binocular rivalry was studied as the subjects performed difficult nonvisual and visual concurrent tasks, directing their attention away from the rivalry stimulus. Periods of complete perceptual dominance were compared for the attended condition, where the subjects reported perceptual changes, and the unattended condition, where one of the simultaneous tasks was performed. During both the attended and unattended conditions, phases of rivalry dominance were obtained by analyzing the subject"s optokinetic nystagmus recorded by an electrooculogram, where the polarity of the nystagmus served as an objective indicator of the perceived direction of motion. In all cases, the presence of a difficult concurrent task had little or no effect on the statistics of the alternations, as judged by two classic tests of rivalry, although the overall alternation rate showed a small but significant increase with the concurrent task. It is concluded that the statistical patterns of rivalry alternations are not governed by attentional shifts or decision-making on the part of the subject.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method will be described for finding the shape of a smooth apaque object form a monocular image, given a knowledge of the surface photometry, the position of the lightsource and certain auxiliary information to resolve ambiguities. This method is complementary to the use of stereoscopy which relies on matching up sharp detail and will fail on smooth objects. Until now the image processing of single views has been restricted to objects which can meaningfully be considered two-dimensional or bounded by plane surfaces. It is possible to derive a first-order non-linear partial differential equation in two unknowns relating the intensity at the image points to the shape of the objects. This equation can be solved by means of an equivalent set of five ordinary differential equations. A curve traced out by solving this set of equations for one set of starting values is called a characteristic strip. Starting one of these strips from each point on some initial curve will produce the whole solution surface. The initial curves can usually be constructed around so-called singular points. A number of applications of this metod will be discussed including one to lunar topography and one to the scanning electron microscope. In both of these cases great simplifications occur in the equations. A note on polyhedra follows and a quantitative theory of facial make-up is touched upon. An implementation of some of these ideas on the PDP-6 computer with its attached image-dissector camera at the Artificial intelligence Laboratory will be described, and also a nose-recognition program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods are presented (1) to partition or decompose a visual scene into the bodies forming it; (2) to position these bodies in three-dimensional space, by combining two scenes that make a stereoscopic pair; (3) to find the regions or zones of a visual scene that belong to its background; (4) to carry out the isolation of objects in (1) when the input has inaccuracies. Running computer programs implement the methods, and many examples illustrate their behavior. The input is a two-dimensional line-drawing of the scene, assumed to contain three-dimensional bodies possessing flat faces (polyhedra); some of them may be partially occluded. Suggestions are made for extending the work to curved objects. Some comparisons are made with human visual perception. The main conclusion is that it is possible to separate a picture or scene into the constituent objects exclusively on the basis of monocular geometric properties (on the basis of pure form); in fact, successful methods are shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the absence of cues for absolute depth measurements as binocular disparity, motion, or defocus, the absolute distance between the observer and a scene cannot be measured. The interpretation of shading, edges and junctions may provide a 3D model of the scene but it will not inform about the actual "size" of the space. One possible source of information for absolute depth estimation is the image size of known objects. However, this is computationally complex due to the difficulty of the object recognition process. Here we propose a source of information for absolute depth estimation that does not rely on specific objects: we introduce a procedure for absolute depth estimation based on the recognition of the whole scene. The shape of the space of the scene and the structures present in the scene are strongly related to the scale of observation. We demonstrate that, by recognizing the properties of the structures present in the image, we can infer the scale of the scene, and therefore its absolute mean depth. We illustrate the interest in computing the mean depth of the scene with application to scene recognition and object detection.