14 resultados para Blacklock, Thomas, 1721-1791.
em Massachusetts Institute of Technology
Resumo:
Many 3D objects in the world around us are strongly constrained. For instance, not only cultural artifacts but also many natural objects are bilaterally symmetric. Thoretical arguments suggest and psychophysical experiments confirm that humans may be better in the recognition of symmetric objects. The hypothesis of symmetry-induced virtual views together with a network model that successfully accounts for human recognition of generic 3D objects leads to predictions that we have verified with psychophysical experiments.
Resumo:
We present a new method to select features for a face detection system using Support Vector Machines (SVMs). In the first step we reduce the dimensionality of the input space by projecting the data into a subset of eigenvectors. The dimension of the subset is determined by a classification criterion based on minimizing a bound on the expected error probability of an SVM. In the second step we select features from the SVM feature space by removing those that have low contributions to the decision function of the SVM.
Resumo:
Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting where elementary observations are joint occurrences of pairs of abstract objects from two finite sets. The main challenge for statistical models in this context is to overcome the inherent data sparseness and to estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample set. Moreover, it is often of considerable interest to extract grouping structure or to find a hierarchical data organization. A novel family of mixture models is proposed which explain the observed data by a finite number of shared aspects or clusters. This provides a common framework for statistical inference and structure discovery and also includes several recently proposed models as special cases. Adopting the maximum likelihood principle, EM algorithms are derived to fit the model parameters. We develop improved versions of EM which largely avoid overfitting problems and overcome the inherent locality of EM--based optimization. Among the broad variety of possible applications, e.g., in information retrieval, natural language processing, data mining, and computer vision, we have chosen document retrieval, the statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images to test and evaluate the proposed algorithms.
Resumo:
Interviews with more than 40 leaders in the Boston area health care industry have identified a range of broadly-felt critical problems. This document synthesizes these problems and places them in the context of work and family issues implicit in the organization of health care workplaces. It concludes with questions about possible ways to address such issues. The defining circumstance for the health care industry nationally as well as regionally at present is an extraordinary reorganization, not yet fully negotiated, in the provision and financing of health care. Hoped-for controls on increased costs of medical care – specifically the widespread replacement of indemnity insurance by market-based managed care and business models of operation--have fallen far short of their promise. Pressures to limit expenditures have produced dispiriting conditions for the entire healthcare workforce, from technicians and aides to nurses and physicians. Under such strains, relations between managers and workers providing care are uneasy, ranging from determined efforts to maintain respectful cooperation to adversarial negotiation. Taken together, the interviews identify five key issues affecting a broad cross-section of occupational groups, albeit in different ways: Staffing shortages of various kinds throughout the health care workforce create problems for managers and workers and also for the quality of patient care. Long work hours and inflexible schedules place pressure on virtually every part of the healthcare workforce, including physicians. Degraded and unsupportive working conditions, often the result of workplace "deskilling" and "speed up," undercut previous modes of clinical practice. Lack of opportunities for training and advancement exacerbate workforce problems in an industry where occupational categories and terms of work are in a constant state of flux. Professional and employee voices are insufficiently heard in conditions of rapid institutional reorganization and consolidation. Interviewees describe multiple impacts of these issues--on the operation of health care workplaces, on the well being of the health care workforce, and on the quality of patient care. Also apparent in the interviews, but not clearly named and defined, is the impact of these issues on the ability of workers to attend well to the needs of their families--and the reciprocal impact of workers' family tensions on workplace performance. In other words, the same things that affect patient care also affect families, and vice versa. Some workers describe feeling both guilty about raising their own family issues when their patients' needs are at stake, and resentful about the exploitation of these feelings by administrators making workplace policy. The different institutions making up the health care system have responded to their most pressing issues with a variety of specific stratagems but few that address the complexities connecting relations between work and family. The MIT Workplace Center proposes a collaborative exploration of next steps to probe these complications and to identify possible locations within the health care system for workplace experimentation with outcomes benefiting all parties.
Resumo:
This report is a formal documentation of the results of an assessment of the degree to which Lean Principles and Practices have been implemented in the US Aerospace and Defense Industry. An Industry Association team prepared it for the DCMA-DCAAIndustry Association “Crosstalk” Coalition in response to a “Crosstalk” meeting action request to the industry associations. The motivation of this request was provided by the many potential benefits to system product quality, affordability and industry responsiveness, which a high degree of industry Lean implementation can produce.
Resumo:
Begin with a call to action. Present evidence on the dimensions of an employment crisis in the Aerospace Industry. Understand the links to issues of instability and lean. Focus dialogue on high leverage, mutual gains options for all stakeholders in the industry. Identify specific next steps. Under the auspices of LAI. In other forums as appropriate.
Resumo:
The Lean Aircraft Initiative began in the summer of 1992 as a “quick look” into the feasibility of applying manufacturing principles that had been pioneered in the automobile industry, most notably the Toyota Production System, to the U.S. defense aircraft industry. Once it was established that “lean principles” (the term coined to describe the new paradigm in automobile manufacturing) were indeed applicable to aircraft manufacturing as well, the Initiative was broadened to include other segments of the defense aerospace industry. These consisted of electronics/avionics, engines, electro-mechanical systems, missiles, and space systems manufacturers. In early 1993, a formal framework was established in which 21 defense firms and the Air Force formed a consortium to support and participate in the Initiative at M.I.T.
Resumo:
The Manufacturing Systems team was one of the research teams within the Lean Aerospace Initiative (LAI) whose goal was to document, analyze and communicate the design attributes and relationships that lead to significant performance improvements in manufacturing systems in the defense aerospace industry. This report will provide an integrated record of this research using the Production Operations Transition to Lean Roadmap as its organizing framework.
Resumo:
This thesis presents there important results in visual object recognition based on shape. (1) A new algorithm (RAST; Recognition by Adaptive Sudivisions of Tranformation space) is presented that has lower average-case complexity than any known recognition algorithm. (2) It is shown, both theoretically and empirically, that representing 3D objects as collections of 2D views (the "View-Based Approximation") is feasible and affects the reliability of 3D recognition systems no more than other commonly made approximations. (3) The problem of recognition in cluttered scenes is considered from a Bayesian perspective; the commonly-used "bounded-error errorsmeasure" is demonstrated to correspond to an independence assumption. It is shown that by modeling the statistical properties of real-scenes better, objects can be recognized more reliably.
Resumo:
We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle wafer. The original Si wafer and the relaxed SiGe buffer are subsequently removed, thereby transferring a strained-Si layer directly to Si substrate without intermediate SiGe or oxide layers. Complete removal of Ge from the structure was confirmed by cross-sectional transmission electron microscopy as well as secondary ion mass spectrometry. A plan-view transmission electron microscopy study of the strained-Si/Si interface reveals that the lattice-mismatch between the layers is accommodated by an orthogonal array of edge dislocations. This misfit dislocation array, which forms upon bonding, is geometrically necessary and has an average spacing of approximately 40nm, in excellent agreement with established dislocation theory. To our knowledge, this is the first study of a chemically homogeneous, yet lattice-mismatched, interface.
Resumo:
Manufacturing has evolved to become a critical element of the competitive skill set of defense aerospace firms. Given the changes in the acquisition environment and culture; traditional “thrown over the wall” means of developing and manufacturing products are insufficient. Also, manufacturing systems are complex systems that need to be carefully designed in a holistic manner and there are shortcomings with available tools and methods to assist in the design of these systems. This paper outlines the generation and validation of a framework to guide this manufacturing system design process.