3 resultados para Bank results

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Expectation-Maximization (EM) algorithm is an iterative approach to maximum likelihood parameter estimation. Jordan and Jacobs (1993) recently proposed an EM algorithm for the mixture of experts architecture of Jacobs, Jordan, Nowlan and Hinton (1991) and the hierarchical mixture of experts architecture of Jordan and Jacobs (1992). They showed empirically that the EM algorithm for these architectures yields significantly faster convergence than gradient ascent. In the current paper we provide a theoretical analysis of this algorithm. We show that the algorithm can be regarded as a variable metric algorithm with its searching direction having a positive projection on the gradient of the log likelihood. We also analyze the convergence of the algorithm and provide an explicit expression for the convergence rate. In addition, we describe an acceleration technique that yields a significant speedup in simulation experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel algorithm for learning in a class of stochastic Markov decision processes (MDPs) with continuous state and action spaces that trades speed for accuracy. A transform of the stochastic MDP into a deterministic one is presented which captures the essence of the original dynamics, in a sense made precise. In this transformed MDP, the calculation of values is greatly simplified. The online algorithm estimates the model of the transformed MDP and simultaneously does policy search against it. Bounds on the error of this approximation are proven, and experimental results in a bicycle riding domain are presented. The algorithm learns near optimal policies in orders of magnitude fewer interactions with the stochastic MDP, using less domain knowledge. All code used in the experiments is available on the project's web site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducing function sharing into designs allows eliminating costly structure by adapting existing structure to perform its function. This can eliminate many inefficiencies of reusing general componentssin specific contexts. "Redistribution of intermediate results'' focuses on instances where adaptation requires only addition/deletion of data flow and unused code removal. I show that this approach unifies and extends several well-known optimization classes. The system performs search and screening by deriving, using a novel explanation-based generalization technique, operational filtering predicates from input teleological information. The key advantage is to focus the system's effort on optimizations that are easier to prove safe.