2 resultados para Bang-bang phase-locked loop
em Massachusetts Institute of Technology
Resumo:
Control algorithms that exploit chaotic behavior can vastly improve the performance of many practical and useful systems. The program Perfect Moment is built around a collection of such techniques. It autonomously explores a dynamical system's behavior, using rules embodying theorems and definitions from nonlinear dynamics to zero in on interesting and useful parameter ranges and state-space regions. It then constructs a reference trajectory based on that information and causes the system to follow it. This program and its results are illustrated with several examples, among them the phase-locked loop, where sections of chaotic attractors are used to increase the capture range of the circuit.
Resumo:
Handwriting production is viewed as a constrained modulation of an underlying oscillatory process. Coupled oscillations in horizontal and vertical directions produce letter forms, and when superimposed on a rightward constant velocity horizontal sweep result in spatially separated letters. Modulation of the vertical oscillation is responsible for control of letter height, either through altering the frequency or altering the acceleration amplitude. Modulation of the horizontal oscillation is responsible for control of corner shape through altering phase or amplitude. The vertical velocity zero crossing in the velocity space diagram is important from the standpoint of control. Changing the horizontal velocity value at this zero crossing controls corner shape, and such changes can be effected through modifying the horizontal oscillation amplitude and phase. Changing the slope at this zero crossing controls writing slant; this slope depends on the horizontal and vertical velocity zero amplitudes and on the relative phase difference. Letter height modulation is also best applied at the vertical velocity zero crossing to preserve an even baseline. The corner shape and slant constraints completely determine the amplitude and phase relations between the two oscillations. Under these constraints interletter separation is not an independent parameter. This theory applies generally to a number of acceleration oscillation patterns such as sinusoidal, rectangular and trapezoidal oscillations. The oscillation theory also provides an explanation for how handwriting might degenerate with speed. An implementation of the theory in the context of the spring muscle model is developed. Here sinusoidal oscillations arise from a purely mechanical sources; orthogonal antagonistic spring pairs generate particular cycloids depending on the initial conditions. Modulating between cycloids can be achieved by changing the spring zero settings at the appropriate times. Frequency can be modulated either by shifting between coactivation and alternating activation of the antagonistic springs or by presuming variable spring constant springs. An acceleration and position measuring apparatus was developed for measurements of human handwriting. Measurements of human writing are consistent with the oscillation theory. It is shown that the minimum energy movement for the spring muscle is bang-coast-bang. For certain parameter values a singular arc solution can be shown to be minimizing. Experimental measurements however indicate that handwriting is not a minimum energy movement.