1 resultado para BASE-LINE
em Massachusetts Institute of Technology
Filtro por publicador
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (30)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (52)
- Aston University Research Archive (6)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Câmara dos Deputados (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (72)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (59)
- CentAUR: Central Archive University of Reading - UK (4)
- Center for Jewish History Digital Collections (5)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (31)
- Cochin University of Science & Technology (CUSAT), India (5)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (19)
- Helda - Digital Repository of University of Helsinki (20)
- Indian Institute of Science - Bangalore - Índia (243)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (2)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- Queensland University of Technology - ePrints Archive (253)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositorio Institucional de la Universidad Nacional Agraria (11)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (31)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scielo España (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (9)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal (1)
- Université de Montréal, Canada (5)
- University of Michigan (6)
- University of Queensland eSpace - Australia (5)
Resumo:
We describe a technique for finding pixelwise correspondences between two images by using models of objects of the same class to guide the search. The object models are 'learned' from example images (also called prototypes) of an object class. The models consist of a linear combination ofsprototypes. The flow fields giving pixelwise correspondences between a base prototype and each of the other prototypes must be given. A novel image of an object of the same class is matched to a model by minimizing an error between the novel image and the current guess for the closest modelsimage. Currently, the algorithm applies to line drawings of objects. An extension to real grey level images is discussed.