1 resultado para B-spline function
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (2)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (12)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (6)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (76)
- Boston University Digital Common (3)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (14)
- CentAUR: Central Archive University of Reading - UK (80)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (45)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (26)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (36)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (95)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (121)
- Queensland University of Technology - ePrints Archive (19)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (153)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (11)
- School of Medicine, Washington University, United States (2)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (12)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (12)
- Université de Montréal (1)
- Université de Montréal, Canada (12)
- University of Connecticut - USA (1)
- University of Michigan (5)
- University of Queensland eSpace - Australia (39)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
- WestminsterResearch - UK (2)
Resumo:
The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.