3 resultados para Average Case Complexity
em Massachusetts Institute of Technology
Resumo:
This thesis presents there important results in visual object recognition based on shape. (1) A new algorithm (RAST; Recognition by Adaptive Sudivisions of Tranformation space) is presented that has lower average-case complexity than any known recognition algorithm. (2) It is shown, both theoretically and empirically, that representing 3D objects as collections of 2D views (the "View-Based Approximation") is feasible and affects the reliability of 3D recognition systems no more than other commonly made approximations. (3) The problem of recognition in cluttered scenes is considered from a Bayesian perspective; the commonly-used "bounded-error errorsmeasure" is demonstrated to correspond to an independence assumption. It is shown that by modeling the statistical properties of real-scenes better, objects can be recognized more reliably.
Resumo:
Each player in the financial industry, each bank, stock exchange, government agency, or insurance company operates its own financial information system or systems. By its very nature, financial information, like the money that it represents, changes hands. Therefore the interoperation of financial information systems is the cornerstone of the financial services they support. E-services frameworks such as web services are an unprecedented opportunity for the flexible interoperation of financial systems. Naturally the critical economic role and the complexity of financial information led to the development of various standards. Yet standards alone are not the panacea: different groups of players use different standards or different interpretations of the same standard. We believe that the solution lies in the convergence of flexible E-services such as web-services and semantically rich meta-data as promised by the semantic Web; then a mediation architecture can be used for the documentation, identification, and resolution of semantic conflicts arising from the interoperation of heterogeneous financial services. In this paper we illustrate the nature of the problem in the Electronic Bill Presentment and Payment (EBPP) industry and the viability of the solution we propose. We describe and analyze the integration of services using four different formats: the IFX, OFX and SWIFT standards, and an example proprietary format. To accomplish this integration we use the COntext INterchange (COIN) framework. The COIN architecture leverages a model of sources and receivers’ contexts in reference to a rich domain model or ontology for the description and resolution of semantic heterogeneity.
Resumo:
We analyze an infinite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are identically distributed random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to maximize expected discounted, or expected average profit over the infinite planning horizon. We show that a stationary (s,S,p) policy is optimal for both the discounted and average profit models with general demand functions. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period.