8 resultados para Augmentative manipulation

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new statistical, model-based approach to building a contact state observer. The observer uses measurements of the contact force and position, and prior information about the task encoded in a graph, to determine the current location of the robot in the task configuration space. Each node represents what the measurements will look like in a small region of configuration space by storing a predictive, statistical, measurement model. This approach assumes that the measurements are statistically block independent conditioned on knowledge of the model, which is a fairly good model of the actual process. Arcs in the graph represent possible transitions between models. Beam Viterbi search is used to match measurement history against possible paths through the model graph in order to estimate the most likely path for the robot. The resulting approach provides a new decision process that can be use as an observer for event driven manipulation programming. The decision procedure is significantly more robust than simple threshold decisions because the measurement history is used to make decisions. The approach can be used to enhance the capabilities of autonomous assembly machines and in quality control applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Babies are born with simple manipulation capabilities such as reflexes to perceived stimuli. Initial discoveries by babies are accidental until they become coordinated and curious enough to actively investigate their surroundings. This thesis explores the development of such primitive learning systems using an embodied light-weight hand with three fingers and a thumb. It is self-contained having four motors and 36 exteroceptor and proprioceptor sensors controlled by an on-palm microcontroller. Primitive manipulation is learned from sensory inputs using competitive learning, back-propagation algorithm and reinforcement learning strategies. This hand will be used for a humanoid being developed at the MIT Artificial Intelligence Laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last decade, large and costly instruments are being replaced by system based on microfluidic devices. Microfluidic devices hold the promise of combining a small analytical laboratory onto a chip-sized substrate to identify, immobilize, separate, and purify cells, bio-molecules, toxins, and other chemical and biological materials. Compared to conventional instruments, microfluidic devices would perform these tasks faster with higher sensitivity and efficiency, and greater affordability. Dielectrophoresis is one of the enabling technologies for these devices. It exploits the differences in particle dielectric properties to allow manipulation and characterization of particles suspended in a fluidic medium. Particles can be trapped or moved between regions of high or low electric fields due to the polarization effects in non-uniform electric fields. By varying the applied electric field frequency, the magnitude and direction of the dielectrophoretic force on the particle can be controlled. Dielectrophoresis has been successfully demonstrated in the separation, transportation, trapping, and sorting of various biological particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans can effortlessly manipulate objects in their hands, dexterously sliding and twisting them within their grasp. Robots, however, have none of these capabilities, they simply grasp objects rigidly in their end effectors. To investigate this common form of human manipulation, an analysis of controlled slipping of a grasped object within a robot hand was performed. The Salisbury robot hand demonstrated many of these controlled slipping techniques, illustrating many results of this analysis. First, the possible slipping motions were found as a function of the location, orientation, and types of contact between the hand and object. Second, for a given grasp, the contact types were determined as a function of the grasping force and the external forces on the object. Finally, by changing the grasping force, the robot modified the constraints on the object and affect controlled slipping slipping motions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flexibility of the robot is the key to its success as a viable aid to production. Flexibility of a robot can be explained in two directions. The first is to increase the physical generality of the robot such that it can be easily reconfigured to handle a wide variety of tasks. The second direction is to increase the ability of the robot to interact with its environment such that tasks can still be successfully completed in the presence of uncertainties. The use of articulated hands are capable of adapting to a wide variety of grasp shapes, hence reducing the need for special tooling. The availability of low mass, high bandwidth points close to the manipulated object also offers significant improvements I the control of fine motions. This thesis provides a framework for using articulated hands to perform local manipulation of objects. N particular, it addresses the issues in effecting compliant motions of objects in Cartesian space. The Stanford/JPL hand is used as an example to illustrate a number of concepts. The examples provide a unified methodology for controlling articulated hands grasping with point contacts. We also present a high-level hand programming system based on the methodologies developed in this thesis. Compliant motion of grasped objects and dexterous manipulations can be easily described in the LISP-based hand programming language.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report presents a set of representations methodologies and tools for the purpose of visualizing, analyzing and designing functional shapes in terms of constraints on motion. The core of the research is an interactive computational environment that provides an explicit visual representation of motion constraints produced by shape interactions, and a series of tools that allow for the manipulation of motion constraints and their underlying shapes for the purpose of design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this research is to develop the prototype of a tactile sensing platform for anthropomorphic manipulation research. We investigate this problem through the fabrication and simple control of a planar 2-DOF robotic finger inspired by anatomic consistency, self-containment, and adaptability. The robot is equipped with a tactile sensor array based on optical transducer technology whereby localized changes in light intensity within an illuminated foam substrate correspond to the distribution and magnitude of forces applied to the sensor surface plane. The integration of tactile perception is a key component in realizing robotic systems which organically interact with the world. Such natural behavior is characterized by compliant performance that can initiate internal, and respond to external, force application in a dynamic environment. However, most of the current manipulators that support some form of haptic feedback either solely derive proprioceptive sensation or only limit tactile sensors to the mechanical fingertips. These constraints are due to the technological challenges involved in high resolution, multi-point tactile perception. In this work, however, we take the opposite approach, emphasizing the role of full-finger tactile feedback in the refinement of manual capabilities. To this end, we propose and implement a control framework for sensorimotor coordination analogous to infant-level grasping and fixturing reflexes. This thesis details the mechanisms used to achieve these sensory, actuation, and control objectives, along with the design philosophies and biological influences behind them. The results of behavioral experiments with a simple tactilely-modulated control scheme are also described. The hope is to integrate the modular finger into an %engineered analog of the human hand with a complete haptic system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most glyco-engineering approaches used to improve quality of recombinant glycoproteins involve the manipulation of glycosyltransferase and/or glycosidase expression. We investigated whether the over expression of nucleotide sugar transporters, particularly the CMP-sialic acid transporter (CMP-SAT), would be a means to improve the sialylation process in CHO cells. We hypothesized that increasing the expression of the CMP-SAT in the cells would increase the transport of the CMP-sialic acid in the Golgi lumen, hence increasing the intra-lumenal CMP-sialic acid pool, and resulting in a possible increase in sialylation extent of proteins being produced. We report the construction of a CMP-SAT expression vector which was used for transfection into CHO-IFNγ, a CHO cell line producing human IFNγ. This resulted in approximately 2 to 5 times increase in total CMP-SAT expression in some of the positive clones as compared to untransfected CHO-IFNγ, as determined using real-time PCR analysis. This in turn concurred with a 9.6% to 16.3% percent increase in site sialylation. This engineering approach has thus been identified as a novel means of improving sialylation in recombinant glycoprotein therapeutics. This strategy can be utilized feasibly on its own, or in combination with existing sialylation improvement strategies. It is believed that such multi-prong approaches are required to effectively manipulate the complex sialylation process, so as to bring us closer to the goal of producing recombinant glycoproteins of high and consistent sialylation from mammalian cells.