4 resultados para Asymptotical Well-Behavior

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a natural norm associated with a starting point of the homogeneous self-dual (HSD) embedding model for conic convex optimization. In this norm two measures of the HSD model’s behavior are precisely controlled independent of the problem instance: (i) the sizes of ε-optimal solutions, and (ii) the maximum distance of ε-optimal solutions to the boundary of the cone of the HSD variables. This norm is also useful in developing a stopping-rule theory for HSD-based interior-point methods such as SeDuMi. Under mild assumptions, we show that a standard stopping rule implicitly involves the sum of the sizes of the ε-optimal primal and dual solutions, as well as the size of the initial primal and dual infeasibility residuals. This theory suggests possible criteria for developing starting points for the homogeneous self-dual model that might improve the resulting solution time in practice

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In my research, I have performed an extensive experimental investigation of harmonic-drive properties such as stiffness, friction, and kinematic error. From my experimental results, I have found that these properties can be sharply non-linear and highly dependent on operating conditions. Due to the complex interaction of these poorly behaved transmission properties, dynamic response measurements showed surprisingly agitated behavior, especially around system resonance. Theoretical models developed to mimic the observed response illustrated that non-linear frictional effects cannot be ignored in any accurate harmonic-drive representation. Additionally, if behavior around system resonance must be replicated, kinematic error and transmission compliance as well as frictional dissipation from gear-tooth rubbing must all be incorporated into the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) is the elastomer of choice to create a variety of microfluidic devices by soft lithography techniques (eg., [1], [2], [3], [4]). Accurate and reliable design, manufacture, and operation of microfluidic devices made from PDMS, require a detailed characterization of the deformation and failure behavior of the material. This paper discusses progress in a recently-initiated research project towards this goal. We have conducted large-deformation tension and compression experiments on traditional macroscale specimens, as well as microscale tension experiments on thin-film (≈ 50µm thickness) specimens of PDMS with varying ratios of monomer:curing agent (5:1, 10:1, 20:1). We find that the stress-stretch response of these materials shows significant variability, even for nominally identically prepared specimens. A non-linear, large-deformation rubber-elasticity model [5], [6] is applied to represent the behavior of PDMS. The constitutive model has been implemented in a finite-element program [7] to aid the design of microfluidic devices made from this material. As a first attempt towards the goal of estimating the non-linear material parameters for PDMS from indentation experiments, we have conducted micro-indentation experiments using a spherical indenter-tip, and carried out corresponding numerical simulations to verify how well the numerically-predicted P(load-h(depth of indentation) curves compare with the corresponding experimental measurements. The results are encouraging, and show the possibility of estimating the material parameters for PDMS from relatively simple micro-indentation experiments, and corresponding numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers a connection between the deterministic and noisy behavior of nonlinear networks. Specifically, a particular bridge circuit is examined which has two possibly nonlinear energy storage elements. By proper choice of the constitutive relations for the network elements, the deterministic terminal behavior reduces to that of a single linear resistor. This reduction of the deterministic terminal behavior, in which a natural frequency of a linear circuit does not appear in the driving-point impedance, has been shown in classical circuit theory books (e.g. [1, 2]). The paper shows that, in addition to the reduction of the deterministic behavior, the thermal noise at the terminals of the network, arising from the usual Nyquist-Johnson noise model associated with each resistor in the network, is also exactly that of a single linear resistor. While this result for the linear time-invariant (LTI) case is a direct consequence of a well-known result for RLC circuits, the nonlinear result is novel. We show that the terminal noise current is precisely that predicted by the Nyquist-Johnson model for R if the driving voltage is zero or constant, but not if the driving voltage is time-dependent or the inductor and capacitor are time-varying