1 resultado para Ascertainment bias
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (4)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (20)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bibloteca do Senado Federal do Brasil (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (95)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- Cambridge University Engineering Department Publications Database (29)
- CentAUR: Central Archive University of Reading - UK (61)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (10)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Cornell: DigitalCommons@ILR (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons at Florida International University (9)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (8)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (32)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (9)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (58)
- Queensland University of Technology - ePrints Archive (357)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (12)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
- Research Open Access Repository of the University of East London. (1)
- School of Medicine, Washington University, United States (2)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (5)
- Universidade do Algarve (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (8)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (7)
- University of Connecticut - USA (2)
- University of Michigan (13)
- University of Queensland eSpace - Australia (19)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- WestminsterResearch - UK (2)
Relevância:
Resumo:
I describe an exploration criterion that attempts to minimize the error of a learner by minimizing its estimated squared bias. I describe experiments with locally-weighted regression on two simple kinematics problems, and observe that this "bias-only" approach outperforms the more common "variance-only" exploration approach, even in the presence of noise.