10 resultados para Artificial Information Models

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned by assembling graph fragments in an additive model. The connections between individual pixels are not very informative, but by using dense graphs, we can pool information from large regions of the image; dense models also support efficient inference. We show how contextual information from other objects can improve detection performance, both in terms of accuracy and speed, by using a computational cascade. We apply our system to detect stuff and things in office and street scenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I have invented "Internet Fish," a novel class of resource-discovery tools designed to help users extract useful information from the Internet. Internet Fish (IFish) are semi-autonomous, persistent information brokers; users deploy individual IFish to gather and refine information related to a particular topic. An IFish will initiate research, continue to discover new sources of information, and keep tabs on new developments in that topic. As part of the information-gathering process the user interacts with his IFish to find out what it has learned, answer questions it has posed, and make suggestions for guidance. Internet Fish differ from other Internet resource discovery systems in that they are persistent, personal and dynamic. As part of the information-gathering process IFish conduct extended, long-term conversations with users as they explore. They incorporate deep structural knowledge of the organization and services of the net, and are also capable of on-the-fly reconfiguration, modification and expansion. Human users may dynamically change the IFish in response to changes in the environment, or IFish may initiate such changes itself. IFish maintain internal state, including models of its own structure, behavior, information environment and its user; these models permit an IFish to perform meta-level reasoning about its own structure. To facilitate rapid assembly of particular IFish I have created the Internet Fish Construction Kit. This system provides enabling technology for the entire class of Internet Fish tools; it facilitates both creation of new IFish as well as additions of new capabilities to existing ones. The Construction Kit includes a collection of encapsulated heuristic knowledge modules that may be combined in mix-and-match fashion to create a particular IFish; interfaces to new services written with the Construction Kit may be immediately added to "live" IFish. Using the Construction Kit I have created a demonstration IFish specialized for finding World-Wide Web documents related to a given group of documents. This "Finder" IFish includes heuristics that describe how to interact with the Web in general, explain how to take advantage of various public indexes and classification schemes, and provide a method for discovering similarity relationships among documents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examines the problem of an autonomous agent learning a causal world model of its environment. Previous approaches to learning causal world models have concentrated on environments that are too "easy" (deterministic finite state machines) or too "hard" (containing much hidden state). We describe a new domain --- environments with manifest causal structure --- for learning. In such environments the agent has an abundance of perceptions of its environment. Specifically, it perceives almost all the relevant information it needs to understand the environment. Many environments of interest have manifest causal structure and we show that an agent can learn the manifest aspects of these environments quickly using straightforward learning techniques. We present a new algorithm to learn a rule-based causal world model from observations in the environment. The learning algorithm includes (1) a low level rule-learning algorithm that converges on a good set of specific rules, (2) a concept learning algorithm that learns concepts by finding completely correlated perceptions, and (3) an algorithm that learns general rules. In addition this thesis examines the problem of finding a good expert from a sequence of experts. Each expert has an "error rate"; we wish to find an expert with a low error rate. However, each expert's error rate and the distribution of error rates are unknown. A new expert-finding algorithm is presented and an upper bound on the expected error rate of the expert is derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been much interest in the area of model-based reasoning within the Artificial Intelligence community, particularly in its application to diagnosis and troubleshooting. The core issue in this thesis, simply put, is, model-based reasoning is fine, but whence the model? Where do the models come from? How do we know we have the right models? What does the right model mean anyway? Our work has three major components. The first component deals with how we determine whether a piece of information is relevant to solving a problem. We have three ways of determining relevance: derivational, situational and an order-of-magnitude reasoning process. The second component deals with the defining and building of models for solving problems. We identify these models, determine what we need to know about them, and importantly, determine when they are appropriate. Currently, the system has a collection of four basic models and two hybrid models. This collection of models has been successfully tested on a set of fifteen simple kinematics problems. The third major component of our work deals with how the models are selected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis develops an approach to the construction of multidimensional stochastic models for intelligent systems exploring an underwater environment. It describes methods for building models by a three- dimensional spatial decomposition of stochastic, multisensor feature vectors. New sensor information is incrementally incorporated into the model by stochastic backprojection. Error and ambiguity are explicitly accounted for by blurring a spatial projection of remote sensor data before incorporation. The stochastic models can be used to derive surface maps or other representations of the environment. The methods are demonstrated on data sets from multibeam bathymetric surveying, towed sidescan bathymetry, towed sidescan acoustic imagery, and high-resolution scanning sonar aboard a remotely operated vehicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various studies of asset markets have shown that traders are capable of learning and transmitting information through prices in many situations. In this paper we replace human traders with intelligent software agents in a series of simulated markets. Using these simple learning agents, we are able to replicate several features of the experiments with human subjects, regarding (1) dissemination of information from informed to uninformed traders, and (2) aggregation of information spread over different traders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphical techniques for modeling the dependencies of randomvariables have been explored in a variety of different areas includingstatistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics.Formalisms for manipulating these models have been developedrelatively independently in these research communities. In this paper weexplore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independencenetworks (PINs). The paper contains a self-contained review of the basic principles of PINs.It is shown that the well-known forward-backward (F-B) and Viterbialgorithms for HMMs are special cases of more general inference algorithms forarbitrary PINs. Furthermore, the existence of inference and estimationalgorithms for more general graphical models provides a set of analysistools for HMM practitioners who wish to explore a richer class of HMMstructures.Examples of relatively complex models to handle sensorfusion and coarticulationin speech recognitionare introduced and treated within the graphical model framework toillustrate the advantages of the general approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a framework for learning in hidden Markov models with distributed state representations. Within this framework, we derive a learning algorithm based on the Expectation--Maximization (EM) procedure for maximum likelihood estimation. Analogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact and can be solved analytically. However, due to the combinatorial nature of the hidden state representation, the exact E-step is intractable. A simple and tractable mean field approximation is derived. Empirical results on a set of problems suggest that both the mean field approximation and Gibbs sampling are viable alternatives to the computationally expensive exact algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many types of learners one can compute the statistically 'optimal' way to select data. We review how these techniques have been used with feedforward neural networks. We then show how the same principles may be used to select data for two alternative, statistically-based learning architectures: mixtures of Gaussians and locally weighted regression. While the techniques for neural networks are expensive and approximate, the techniques for mixtures of Gaussians and locally weighted regression are both efficient and accurate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting where elementary observations are joint occurrences of pairs of abstract objects from two finite sets. The main challenge for statistical models in this context is to overcome the inherent data sparseness and to estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample set. Moreover, it is often of considerable interest to extract grouping structure or to find a hierarchical data organization. A novel family of mixture models is proposed which explain the observed data by a finite number of shared aspects or clusters. This provides a common framework for statistical inference and structure discovery and also includes several recently proposed models as special cases. Adopting the maximum likelihood principle, EM algorithms are derived to fit the model parameters. We develop improved versions of EM which largely avoid overfitting problems and overcome the inherent locality of EM--based optimization. Among the broad variety of possible applications, e.g., in information retrieval, natural language processing, data mining, and computer vision, we have chosen document retrieval, the statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images to test and evaluate the proposed algorithms.