1 resultado para Approaches to learning
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (7)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (39)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (52)
- Boston University Digital Common (3)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- Cambridge University Engineering Department Publications Database (39)
- CentAUR: Central Archive University of Reading - UK (77)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (16)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (6)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (2)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (8)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (13)
- Indian Institute of Science - Bangalore - Índia (17)
- Instituto Nacional de Saúde de Portugal (2)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (5)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (8)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (97)
- Queensland University of Technology - ePrints Archive (129)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (2)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade dos Açores - Portugal (1)
- Universita di Parma (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (7)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (18)
- University of Queensland eSpace - Australia (44)
- University of Southampton, United Kingdom (8)
- WestminsterResearch - UK (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This thesis examines the problem of an autonomous agent learning a causal world model of its environment. Previous approaches to learning causal world models have concentrated on environments that are too "easy" (deterministic finite state machines) or too "hard" (containing much hidden state). We describe a new domain --- environments with manifest causal structure --- for learning. In such environments the agent has an abundance of perceptions of its environment. Specifically, it perceives almost all the relevant information it needs to understand the environment. Many environments of interest have manifest causal structure and we show that an agent can learn the manifest aspects of these environments quickly using straightforward learning techniques. We present a new algorithm to learn a rule-based causal world model from observations in the environment. The learning algorithm includes (1) a low level rule-learning algorithm that converges on a good set of specific rules, (2) a concept learning algorithm that learns concepts by finding completely correlated perceptions, and (3) an algorithm that learns general rules. In addition this thesis examines the problem of finding a good expert from a sequence of experts. Each expert has an "error rate"; we wish to find an expert with a low error rate. However, each expert's error rate and the distribution of error rates are unknown. A new expert-finding algorithm is presented and an upper bound on the expected error rate of the expert is derived.