1 resultado para Anomaly
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (19)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (29)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (27)
- Boston University Digital Common (5)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (117)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (94)
- Cochin University of Science & Technology (CUSAT), India (15)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (7)
- Earth Simulator Research Results Repository (1)
- Helda - Digital Repository of University of Helsinki (12)
- Hospitais da Universidade de Coimbra (1)
- Indian Institute of Science - Bangalore - Índia (102)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Nottingham eTheses (8)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (15)
- Publishing Network for Geoscientific & Environmental Data (29)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (45)
- Queensland University of Technology - ePrints Archive (57)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (178)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (4)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (40)
- Universidade Federal do Rio Grande do Norte (UFRN) (15)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (6)
- Université de Montréal, Canada (2)
- University of Queensland eSpace - Australia (6)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
We present a general framework for discriminative estimation based on the maximum entropy principle and its extensions. All calculations involve distributions over structures and/or parameters rather than specific settings and reduce to relative entropy projections. This holds even when the data is not separable within the chosen parametric class, in the context of anomaly detection rather than classification, or when the labels in the training set are uncertain or incomplete. Support vector machines are naturally subsumed under this class and we provide several extensions. We are also able to estimate exactly and efficiently discriminative distributions over tree structures of class-conditional models within this framework. Preliminary experimental results are indicative of the potential in these techniques.