17 resultados para Anchoring heuristic
em Massachusetts Institute of Technology
Resumo:
A computer program, named ADEPT (A Distinctly Empirical Prover of Theorems), has been written which proves theorems taken from the abstract theory of groups. Its operation is basically heuristic, incorporating many of the techniques of the human mathematician in a "natural" way. This program has proved almost 100 theorems, as well as serving as a vehicle for testing and evaluating special-purpose heuristics. A detailed description of the program is supplemented by accounts of its performance on a number of theorems, thus providing many insights into the particular problems inherent in the design of a procedure capable of proving a variety of theorems from this domain. Suggestions have been formulated for further efforts along these lines, and comparisons with related work previously reported in the literature have been made.
Resumo:
A procedure is given for recognizing sets of inference rules that generate polynomial time decidable inference relations. The procedure can automatically recognize the tractability of the inference rules underlying congruence closure. The recognition of tractability for that particular rule set constitutes mechanical verification of a theorem originally proved independently by Kozen and Shostak. The procedure is algorithmic, rather than heuristic, and the class of automatically recognizable tractable rule sets can be precisely characterized. A series of examples of rule sets whose tractability is non-trivial, yet machine recognizable, is also given. The technical framework developed here is viewed as a first step toward a general theory of tractable inference relations.
Resumo:
This paper addresses the problem of nonlinear multivariate root finding. In an earlier paper we described a system called Newton which finds roots of systems of nonlinear equations using refinements of interval methods. The refinements are inspired by AI constraint propagation techniques. Newton is competative with continuation methods on most benchmarks and can handle a variety of cases that are infeasible for continuation methods. This paper presents three "cuts" which we believe capture the essential theoretical ideas behind the success of Newton. This paper describes the cuts in a concise and abstract manner which, we believe, makes the theoretical content of our work more apparent. Any implementation will need to adopt some heuristic control mechanism. Heuristic control of the cuts is only briefly discussed here.
Resumo:
I have invented "Internet Fish," a novel class of resource-discovery tools designed to help users extract useful information from the Internet. Internet Fish (IFish) are semi-autonomous, persistent information brokers; users deploy individual IFish to gather and refine information related to a particular topic. An IFish will initiate research, continue to discover new sources of information, and keep tabs on new developments in that topic. As part of the information-gathering process the user interacts with his IFish to find out what it has learned, answer questions it has posed, and make suggestions for guidance. Internet Fish differ from other Internet resource discovery systems in that they are persistent, personal and dynamic. As part of the information-gathering process IFish conduct extended, long-term conversations with users as they explore. They incorporate deep structural knowledge of the organization and services of the net, and are also capable of on-the-fly reconfiguration, modification and expansion. Human users may dynamically change the IFish in response to changes in the environment, or IFish may initiate such changes itself. IFish maintain internal state, including models of its own structure, behavior, information environment and its user; these models permit an IFish to perform meta-level reasoning about its own structure. To facilitate rapid assembly of particular IFish I have created the Internet Fish Construction Kit. This system provides enabling technology for the entire class of Internet Fish tools; it facilitates both creation of new IFish as well as additions of new capabilities to existing ones. The Construction Kit includes a collection of encapsulated heuristic knowledge modules that may be combined in mix-and-match fashion to create a particular IFish; interfaces to new services written with the Construction Kit may be immediately added to "live" IFish. Using the Construction Kit I have created a demonstration IFish specialized for finding World-Wide Web documents related to a given group of documents. This "Finder" IFish includes heuristics that describe how to interact with the Web in general, explain how to take advantage of various public indexes and classification schemes, and provide a method for discovering similarity relationships among documents.
Resumo:
This report describes a paradigm for combining associational and causal reasoning to achieve efficient and robust problem-solving behavior. The Generate, Test and Debug (GTD) paradigm generates initial hypotheses using associational (heuristic) rules. The tester verifies hypotheses, supplying the debugger with causal explanations for bugs found if the test fails. The debugger uses domain-independent causal reasoning techniques to repair hypotheses, analyzing domain models and the causal explanations produced by the tester to determine how to replace faulty assumptions made by the generator. We analyze the strengths and weaknesses of associational and causal reasoning techniques, and present a theory of debugging plans and interpretations. The GTD paradigm has been implemented and tested in the domains of geologic interpretation, the blocks world, and Tower of Hanoi problems.
Resumo:
Two methods of obtaining approximate solutions to the classic General Job-shop Scheduling Program are investigated. The first method is iterative. A sampling of the solution space is used to decide which of a collection of space pruning constraints are consistent with "good" schedules. The selected space pruning constraints are then used to reduce the search space and the sampling is repeated. This approach can be used either to verify whether some set of space pruning constraints can prune with discrimination or to generate solutions directly. Schedules can be represented as trajectories through a Cartesian space. Under the objective criteria of Minimum maximum Lateness family of "good" schedules (trajectories) are geometric neighbors (reside with some "tube") in this space. This second method of generating solutions takes advantage of this adjacency by pruning the space from the outside in thus converging gradually upon this "tube." One the average this methods significantly outperforms an array of the Priority Dispatch rules when the object criteria is that of Minimum Maximum Lateness. It also compares favorably with a recent relaxation procedure.
Resumo:
Explanation-based Generalization requires that the learner obtain an explanation of why a precedent exemplifies a concept. It is, therefore, useless if the system fails to find this explanation. However, it is not necessary to give up and resort to purely empirical generalization methods. In fact, the system may already know almost everything it needs to explain the precedent. Learning by Failing to Explain is a method which is able to exploit current knowledge to prune complex precedents, isolating the mysterious parts of the precedent. The idea has two parts: the notion of partially analyzing a precedent to get rid of the parts which are already explainable, and the notion of re-analyzing old rules in terms of new ones, so that more general rules are obtained.
Resumo:
SIN and SOLDIER are heuristic programs in LISP which solve symbolic integration problems. SIN (Symbolic INtegrator) solves indefinite integration problems at the difficulty approaching those in the larger integral tables. SIN contains several more methods than are used in the previous symbolic integration program SAINT, and solves most of the problems attempted by SAINT in less than one second. SOLDIER (SOLution of Ordinary Differential Equations Routine) solves first order, first degree ordinary differential equations at the level of a good college sophomore and at an average of about five seconds per problem attempted. The differences in philosophy and operation between SAINT and SIN are described, and suggestions for extending the work presented are made.
Resumo:
The research reported here concerns the principles used to automatically generate three-dimensional representations from line drawings of scenes. The computer programs involved look at scenes which consist of polyhedra and which may contain shadows and various kinds of coincidentally aligned scene features. Each generated description includes information about edge shape (convex, concave, occluding, shadow, etc.), about the type of illumination for each region (illuminated, projected shadow, or oriented away from the light source), and about the spacial orientation of regions. The methods used are based on the labeling schemes of Huffman and Clowes; this research provides a considerable extension to their work and also gives theoretical explanations to the heuristic scene analysis work of Guzman, Winston, and others.
Resumo:
This paper describes BUILD, a computer program which generates plans for building specified structures out of simple objects such as toy blocks. A powerful heuristic control structure enables BUILD to use a number of sophisticated construction techniques in its plans. Among these are the incorporation of pre-existing structure into the final design, pre-assembly of movable sub-structures on the table, and use of the extra blocks as temporary supports and counterweights in the course of construction. BUILD does its planning in a modeled 3-space in which blocks of various shapes and sizes can be represented in any orientation and location. The modeling system can maintain several world models at once, and contains modules for displaying states, testing them for inter-object contact and collision, and for checking the stability of complex structures involving frictional forces. Various alternative approaches are discussed, and suggestions are included for the extension of BUILD-like systems to other domains. Also discussed are the merits of BUILD's implementation language, CONNIVER, for this type of problem solving.
Resumo:
This thesis describes some aspects of a computer system for doing medical diagnosis in the specialized field of kidney disease. Because such a system faces the spectre of combinatorial explosion, this discussion concentrates on heuristics which control the number of concurrent hypotheses and efficient "compiled" representations of medical knowledge. In particular, the differential diagnosis of hematuria (blood in the urine) is discussed in detail. A protocol of a simulated doctor/patient interaction is presented and analyzed to determine the crucial structures and processes involved in the diagnosis procedure. The data structure proposed for representing medical information revolves around elementary hypotheses which are activated when certain disposing of findings, activating hypotheses, evaluating hypotheses locally and combining hypotheses globally is examined for its heuristic implications. The thesis attempts to fit the problem of medical diagnosis into the framework of other Artifcial Intelligence problems and paradigms and in particular explores the notions of pure search vs. heuristic methods, linearity and interaction, local vs. global knowledge and the structure of hypotheses within the world of kidney disease.
Resumo:
The problem of achieving conjunctive goals has been central to domain independent planning research; the nonlinear constraint-posting approach has been most successful. Previous planners of this type have been comlicated, heuristic, and ill-defined. I have combined and distilled the state of the art into a simple, precise, implemented algorithm (TWEAK) which I have proved correct and complete. I analyze previous work on domain-independent conjunctive planning; in retrospect it becomes clear that all conjunctive planners, linear and nonlinear, work the same way. The efficiency of these planners depends on the traditional add/delete-list representation for actions, which drastically limits their usefulness. I present theorems that suggest that efficient general purpose planning with more expressive action representations is impossible, and suggest ways to avoid this problem.
Resumo:
This paper describes a system for the computer understanding of English. The system answers questions, executes commands, and accepts information in normal English dialog. It uses semantic information and context to understand discourse and to disambiguate sentences. It combines a complete syntactic analysis of each sentence with a "heuristic understander" which uses different kinds of information about a sentence, other parts of the discourse, and general information about the world in deciding what the sentence means. It is based on the belief that a computer cannot deal reasonably with language unless it can "understand" the subject it is discussing. The program is given a detailed model of the knowledge needed by a simple robot having only a hand and an eye. We can give it instructions to manipulate toy objects, interrogate it about the scene, and give it information it will use in deduction. In addition to knowing the properties of toy objects, the program has a simple model of its own mentality. It can remember and discuss its plans and actions as well as carry them out. It enters into a dialog with a person, responding to English sentences with actions and English replies, and asking for clarification when its heuristic programs cannot understand a sentence through use of context and physical knowledge.
Resumo:
This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distributions, are applied to these image features to create a suite of gait sequence representations. Despite their simplicity, the resulting feature vectors contain enough information to perform well on human identification and gender classification tasks. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times and under varying lighting environments. Each of the integration methods are investigated for their advantages and disadvantages. An improved gait representation is built based on our experiences with the initial set of gait representations. In addition, we show gender classification results using our gait appearance features, the effect of our heuristic feature selection method, and the significance of individual features.
Resumo:
When triangulating a belief network we aim to obtain a junction tree of minimum state space. Searching for the optimal triangulation can be cast as a search over all the permutations of the network's vaeriables. Our approach is to embed the discrete set of permutations in a convex continuous domain D. By suitably extending the cost function over D and solving the continous nonlinear optimization task we hope to obtain a good triangulation with respect to the aformentioned cost. In this paper we introduce an upper bound to the total junction tree weight as the cost function. The appropriatedness of this choice is discussed and explored by simulations. Then we present two ways of embedding the new objective function into continuous domains and show that they perform well compared to the best known heuristic.