6 resultados para Analytic duality-interpretation of language
em Massachusetts Institute of Technology
Resumo:
"The Structure and Interpretation of Computer Programs" is the entry-level subject in Computer Science at the Massachusetts Institute of Technology. It is required of all students at MIT who major in Electrical Engineering or in Computer Science, as one fourth of the "common core curriculum," which also includes two subjects on circuits and linear systems and a subject on the design of digital systems. We have been involved in the development of this subject since 1978, and we have taught this material in its present form since the fall of 1980 to approximately 600 students each year. Most of these students have had little or no prior formal training in computation, although most have played with computers a bit and a few have had extensive programming or hardware design experience. Our design of this introductory Computer Science subject reflects two major concerns. First we want to establish the idea that a computer language is not just a way of getting a computer to perform operations, but rather that it is a novel formal medium for expressing ideas about methodology. Thus, programs must be written for people to read, and only incidentally for machines to execute. Secondly, we believe that the essential material to be addressed by a subject at this level, is not the syntax of particular programming language constructs, nor clever algorithms for computing particular functions of efficiently, not even the mathematical analysis of algorithms and the foundations of computing, but rather the techniques used to control the intellectual complexity of large software systems.
Resumo:
We provide a theory of the three-dimensional interpretation of a class of line-drawings called p-images, which are interpreted by the human vision system as parallelepipeds ("boxes"). Despite their simplicity, p-images raise a number of interesting vision questions: *Why are p-images seen as three-dimensional objects? Why not just as flatimages? *What are the dimensions and pose of the perceived objects? *Why are some p-images interpreted as rectangular boxes, while others are seen as skewed, even though there is no obvious distinction between the images? *When p-images are rotated in three dimensions, why are the image-sequences perceived as distorting objects---even though structure-from-motion would predict that rigid objects would be seen? *Why are some three-dimensional parallelepipeds seen as radically different when viewed from different viewpoints? We show that these and related questions can be answered with the help of a single mathematical result and an associated perceptual principle. An interesting special case arises when there are right angles in the p-image. This case represents a singularity in the equations and is mystifying from the vision point of view. It would seem that (at least in this case) the vision system does not follow the ordinary rules of geometry but operates in accordance with other (and as yet unknown) principles.
Resumo:
KAM is a computer program that can automatically plan, monitor, and interpret numerical experiments with Hamiltonian systems with two degrees of freedom. The program has recently helped solve an open problem in hydrodynamics. Unlike other approaches to qualitative reasoning about physical system dynamics, KAM embodies a significant amount of knowledge about nonlinear dynamics. KAM's ability to control numerical experiments arises from the fact that it not only produces pictures for us to see, but also looks at (sic---in its mind's eye) the pictures it draws to guide its own actions. KAM is organized in three semantic levels: orbit recognition, phase space searching, and parameter space searching. Within each level spatial properties and relationships that are not explicitly represented in the initial representation are extracted by applying three operations ---(1) aggregation, (2) partition, and (3) classification--- iteratively.
Resumo:
This paper considers the problem of language change. Linguists must explain not only how languages are learned but also how and why they have evolved along certain trajectories and not others. While the language learning problem has focused on the behavior of individuals and how they acquire a particular grammar from a class of grammars ${cal G}$, here we consider a population of such learners and investigate the emergent, global population characteristics of linguistic communities over several generations. We argue that language change follows logically from specific assumptions about grammatical theories and learning paradigms. In particular, we are able to transform parameterized theories and memoryless acquisition algorithms into grammatical dynamical systems, whose evolution depicts a population's evolving linguistic composition. We investigate the linguistic and computational consequences of this model, showing that the formalization allows one to ask questions about diachronic that one otherwise could not ask, such as the effect of varying initial conditions on the resulting diachronic trajectories. From a more programmatic perspective, we give an example of how the dynamical system model for language change can serve as a way to distinguish among alternative grammatical theories, introducing a formal diachronic adequacy criterion for linguistic theories.
Resumo:
The STUDENT problem solving system, programmed in LISP, accepts as input a comfortable but restricted subset of English which can express a wide variety of algebra story problems. STUDENT finds the solution to a large class of these problems. STUDENT can utilize a store of global information not specific to any one problem, and may make assumptions about the interpretation of ambiguities in the wording of the problem being solved. If it uses such information or makes any assumptions, STUDENT communicates this fact to the user. The thesis includes a summary of other English language questions-answering systems. All these systems, and STUDENT, are evaluated according to four standard criteria. The linguistic analysis in STUDENT is a first approximation to the analytic portion of a semantic theory of discourse outlined in the thesis. STUDENT finds the set of kernel sentences which are the base of the input discourse, and transforms this sequence of kernel sentences into a set of simultaneous equations which form the semantic base of the STUDENT system. STUDENT then tries to solve this set of equations for the values of requested unknowns. If it is successful it gives the answers in English. If not, STUDENT asks the user for more information, and indicates the nature of the desired information. The STUDENT system is a first step toward natural language communication with computers. Further work on the semantic theory proposed should result in much more sophisticated systems.
Resumo:
The central thesis of this report is that human language is NP-complete. That is, the process of comprehending and producing utterances is bounded above by the class NP, and below by NP-hardness. This constructive complexity thesis has two empirical consequences. The first is to predict that a linguistic theory outside NP is unnaturally powerful. The second is to predict that a linguistic theory easier than NP-hard is descriptively inadequate. To prove the lower bound, I show that the following three subproblems of language comprehension are all NP-hard: decide whether a given sound is possible sound of a given language; disambiguate a sequence of words; and compute the antecedents of pronouns. The proofs are based directly on the empirical facts of the language user's knowledge, under an appropriate idealization. Therefore, they are invariant across linguistic theories. (For this reason, no knowledge of linguistic theory is needed to understand the proofs, only knowledge of English.) To illustrate the usefulness of the upper bound, I show that two widely-accepted analyses of the language user's knowledge (of syntactic ellipsis and phonological dependencies) lead to complexity outside of NP (PSPACE-hard and Undecidable, respectively). Next, guided by the complexity proofs, I construct alternate linguisitic analyses that are strictly superior on descriptive grounds, as well as being less complex computationally (in NP). The report also presents a new framework for linguistic theorizing, that resolves important puzzles in generative linguistics, and guides the mathematical investigation of human language.