3 resultados para Amorphous
em Massachusetts Institute of Technology
Resumo:
Recent developments in microfabrication and nanotechnology will enable the inexpensive manufacturing of massive numbers of tiny computing elements with sensors and actuators. New programming paradigms are required for obtaining organized and coherent behavior from the cooperation of large numbers of unreliable processing elements that are interconnected in unknown, irregular, and possibly time-varying ways. Amorphous computing is the study of developing and programming such ultrascale computing environments. This paper presents an approach to programming an amorphous computer by spontaneously organizing an unstructured collection of processing elements into cooperative groups and hierarchies. This paper introduces a structure called an AC Hierarchy, which logically organizes processors into groups at different levels of granularity. The AC hierarchy simplifies programming of an amorphous computer through new language abstractions, facilitates the design of efficient and robust algorithms, and simplifies the analysis of their performance. Several example applications are presented that greatly benefit from the AC hierarchy. This paper introduces three algorithms for constructing multiple levels of the hierarchy from an unstructured collection of processors.
Resumo:
Amorphous computing is the study of programming ultra-scale computing environments of smart sensors and actuators cite{white-paper}. The individual elements are identical, asynchronous, randomly placed, embedded and communicate locally via wireless broadcast. Aggregating the processors into groups is a useful paradigm for programming an amorphous computer because groups can be used for specialization, increased robustness, and efficient resource allocation. This paper presents a new algorithm, called the clubs algorithm, for efficiently aggregating processors into groups in an amorphous computer, in time proportional to the local density of processors. The clubs algorithm is well-suited to the unique characteristics of an amorphous computer. In addition, the algorithm derives two properties from the physical embedding of the amorphous computer: an upper bound on the number of groups formed and a constant upper bound on the density of groups. The clubs algorithm can also be extended to find the maximal independent set (MIS) and $Delta + 1$ vertex coloring in an amorphous computer in $O(log N)$ rounds, where $N$ is the total number of elements and $Delta$ is the maximum degree.
Resumo:
For a very large network deployed in space with only nearby nodes able to talk to each other, we want to do tasks like robust routing and data storage. One way to organize the network is via a hierarchy, but hierarchies often have a few critical nodes whose death can disrupt organization over long distances. I address this with a system of distributed aggregates called Persistent Nodes, such that spatially local failures disrupt the hierarchy in an area proportional to the diameter of the failure. I describe and analyze this system, which has been implemented in simulation.