5 resultados para Ambiguity resolution

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computer science technique of computational complexity analysis can provide powerful insights into the algorithm-neutral analysis of information processing tasks. Here we show that a simple, theory-neutral linguistic model of syntactic agreement and ambiguity demonstrates that natural language parsing may be computationally intractable. Significantly, we show that it may be syntactic features rather than rules that can cause this difficulty. Informally, human languages and the computationally intractable Satisfiability (SAT) problem share two costly computional mechanisms: both enforce agreement among symbols across unbounded distances (Subject-Verb agreement) and both allow ambiguity (is a word a Noun or a Verb?).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a theory of inheritance theories. We present an original theory of inheritance in nonmonotonic hierarchies. The structures on which this theory is based delineate a framework that subsumes most inheritance theories in the literature, providing a new foundation for inheritance. * Our path-based theory is sound and complete w.r.t. a direct model-theoretic semantics. * Both the credulous and the skeptical conclusions of this theory are polynomial-time computable. * We prove that true skeptical inheritance is not contained in the language of path-based inheritance. Because our techniques are modular w.r.t. the definition of specificity, they generalize to provide a unified framework for a broad class of inheritance theories. By describing multiple inheritance theories in the same "language" of credulous extensions, we make principled comparisons rather than the ad-hoc examination of specific examples makes up most of the comparative inheritance work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary image classifiction is a problem that has received much attention in recent years. In this paper we evaluate a selection of popular techniques in an effort to find a feature set/ classifier combination which generalizes well to full resolution image data. We then apply that system to images at one-half through one-sixteenth resolution, and consider the corresponding error rates. In addition, we further observe generalization performance as it depends on the number of training images, and lastly, compare the system's best error rates to that of a human performing an identical classification task given teh same set of test images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis develops an approach to the construction of multidimensional stochastic models for intelligent systems exploring an underwater environment. It describes methods for building models by a three- dimensional spatial decomposition of stochastic, multisensor feature vectors. New sensor information is incrementally incorporated into the model by stochastic backprojection. Error and ambiguity are explicitly accounted for by blurring a spatial projection of remote sensor data before incorporation. The stochastic models can be used to derive surface maps or other representations of the environment. The methods are demonstrated on data sets from multibeam bathymetric surveying, towed sidescan bathymetry, towed sidescan acoustic imagery, and high-resolution scanning sonar aboard a remotely operated vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many learning problems for which the examples given by the teacher are ambiguously labeled. In this thesis, we will examine one framework of learning from ambiguous examples known as Multiple-Instance learning. Each example is a bag, consisting of any number of instances. A bag is labeled negative if all instances in it are negative. A bag is labeled positive if at least one instance in it is positive. Because the instances themselves are not labeled, each positive bag is an ambiguous example. We would like to learn a concept which will correctly classify unseen bags. We have developed a measure called Diverse Density and algorithms for learning from multiple-instance examples. We have applied these techniques to problems in drug design, stock prediction, and image database retrieval. These serve as examples of how to translate the ambiguity in the application domain into bags, as well as successful examples of applying Diverse Density techniques.