8 resultados para Ad hoc network
em Massachusetts Institute of Technology
Resumo:
We present an algorithm to store data robustly in a large, geographically distributed network by means of localized regions of data storage that move in response to changing conditions. For example, data might migrate away from failures or toward regions of high demand. The PersistentNode algorithm provides this service robustly, but with limited safety guarantees. We use the RAMBO framework to transform PersistentNode into RamboNode, an algorithm that guarantees atomic consistency in exchange for increased cost and decreased liveness. In addition, a half-life analysis of RamboNode shows that it is robust against continuous low-rate failures. Finally, we provide experimental simulations for the algorithm on 2000 nodes, demonstrating how it services requests and examining how it responds to failures.
Resumo:
Research in mobile ad-hoc networks has focused on situations in which nodes have no control over their movements. We investigate an important but overlooked domain in which nodes do have control over their movements. Reinforcement learning methods can be used to control both packet routing decisions and node mobility, dramatically improving the connectivity of the network. We first motivate the problem by presenting theoretical bounds for the connectivity improvement of partially mobile networks and then present superior empirical results under a variety of different scenarios in which the mobile nodes in our ad-hoc network are embedded with adaptive routing policies and learned movement policies.
Resumo:
Small failures should only disrupt a small part of a network. One way to do this is by marking the surrounding area as untrustworthy --- circumscribing the failure. This can be done with a distributed algorithm using hierarchical clustering and neighbor relations, and the resulting circumscription is near-optimal for convex failures.
Resumo:
We describe an adaptive, mid-level approach to the wireless device power management problem. Our approach is based on reinforcement learning, a machine learning framework for autonomous agents. We describe how our framework can be applied to the power management problem in both infrastructure and ad~hoc wireless networks. From this thesis we conclude that mid-level power management policies can outperform low-level policies and are more convenient to implement than high-level policies. We also conclude that power management policies need to adapt to the user and network, and that a mid-level power management framework based on reinforcement learning fulfills these requirements.
Resumo:
This paper describes a theory of inheritance theories. We present an original theory of inheritance in nonmonotonic hierarchies. The structures on which this theory is based delineate a framework that subsumes most inheritance theories in the literature, providing a new foundation for inheritance. * Our path-based theory is sound and complete w.r.t. a direct model-theoretic semantics. * Both the credulous and the skeptical conclusions of this theory are polynomial-time computable. * We prove that true skeptical inheritance is not contained in the language of path-based inheritance. Because our techniques are modular w.r.t. the definition of specificity, they generalize to provide a unified framework for a broad class of inheritance theories. By describing multiple inheritance theories in the same "language" of credulous extensions, we make principled comparisons rather than the ad-hoc examination of specific examples makes up most of the comparative inheritance work.
Resumo:
In this report, I discuss the use of vision to support concrete, everyday activity. I will argue that a variety of interesting tasks can be solved using simple and inexpensive vision systems. I will provide a number of working examples in the form of a state-of-the-art mobile robot, Polly, which uses vision to give primitive tours of the seventh floor of the MIT AI Laboratory. By current standards, the robot has a broad behavioral repertoire and is both simple and inexpensive (the complete robot was built for less than $20,000 using commercial board-level components). The approach I will use will be to treat the structure of the agent's activity---its task and environment---as positive resources for the vision system designer. By performing a careful analysis of task and environment, the designer can determine a broad space of mechanisms which can perform the desired activity. My principal thesis is that for a broad range of activities, the space of applicable mechanisms will be broad enough to include a number mechanisms which are simple and economical. The simplest mechanisms that solve a given problem will typically be quite specialized to that problem. One thus worries that building simple vision systems will be require a great deal of {it ad-hoc} engineering that cannot be transferred to other problems. My second thesis is that specialized systems can be analyzed and understood in a principled manner, one that allows general lessons to be extracted from specialized systems. I will present a general approach to analyzing specialization through the use of transformations that provably improve performance. By demonstrating a sequence of transformations that derive a specialized system from a more general one, we can summarize the specialization of the former in a compact form that makes explicit the additional assumptions that it makes about its environment. The summary can be used to predict the performance of the system in novel environments. Individual transformations can be recycled in the design of future systems.
Resumo:
Machine translation has been a particularly difficult problem in the area of Natural Language Processing for over two decades. Early approaches to translation failed since interaction effects of complex phenomena in part made translation appear to be unmanageable. Later approaches to the problem have succeeded (although only bilingually), but are based on many language-specific rules of a context-free nature. This report presents an alternative approach to natural language translation that relies on principle-based descriptions of grammar rather than rule-oriented descriptions. The model that has been constructed is based on abstract principles as developed by Chomsky (1981) and several other researchers working within the "Government and Binding" (GB) framework. Thus, the grammar is viewed as a modular system of principles rather than a large set of ad hoc language-specific rules.
Resumo:
Recently, researchers have introduced the notion of super-peers to improve signaling efficiency as well as lookup performance of peer-to-peer (P2P) systems. In a separate development, recent works on applications of mobile ad hoc networks (MANET) have seen several proposals on utilizing mobile fleets such as city buses to deploy a mobile backbone infrastructure for communication and Internet access in a metropolitan environment. This paper further explores the possibility of deploying P2P applications such as content sharing and distributed computing, over this mobile backbone infrastructure. Specifically, we study how city buses may be deployed as a mobile system of super-peers. We discuss the main motivations behind our proposal, and outline in detail the design of a super-peer based structured P2P system using a fleet of city buses.