8 resultados para Abstraction.
em Massachusetts Institute of Technology
Resumo:
This report introduces TRANSLUCENT PROCEDURES as a new mechanism for implementing behavioral abstractions. Like an ordinary procedure, a translucent procedure can be invoked, and thus provides an obvious way to capture a BEHAVIOR. Translucent procedures, like ordinary procedures, can be manipulated as first-class objects and combined using functional composition. But unlike ordinary procedures, translucent procedures have structure that can be examined in well-specified non-destructive ways, without invoking the procedure.
Resumo:
The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.
Resumo:
Informal causal descriptions of physical systems abound in sources such as encyclopedias, reports and user's manuals. Yet these descriptions remain largely opaque to computer processing. This paper proposes a representational framework in which such descriptions are viewed as providing partial specifications of paths in a space of possible transitions, or transition space. In this framework, the task of comprehending informal causal descriptions emerges as one of completing the specifications of paths in transition space---filling causal gaps and relating accounts of activity varied by analogy and abstraction. The use of the representation and its operations is illustrated in the context of a simple description concerning rocket propulsion.
Resumo:
Type-omega DPLs (Denotational Proof Languages) are languages for proof presentation and search that offer strong soundness guarantees. LCF-type systems such as HOL offer similar guarantees, but their soundness relies heavily on static type systems. By contrast, DPLs ensure soundness dynamically, through their evaluation semantics; no type system is necessary. This is possible owing to a novel two-tier syntax that separates deductions from computations, and to the abstraction of assumption bases, which is factored into the semantics of the language and allows for sound evaluation. Every type-omega DPL properly contains a type-alpha DPL, which can be used to present proofs in a lucid and detailed form, exclusively in terms of primitive inference rules. Derived inference rules are expressed as user-defined methods, which are "proof recipes" that take arguments and dynamically perform appropriate deductions. Methods arise naturally via parametric abstraction over type-alpha proofs. In that light, the evaluation of a method call can be viewed as a computation that carries out a type-alpha deduction. The type-alpha proof "unwound" by such a method call is called the "certificate" of the call. Certificates can be checked by exceptionally simple type-alpha interpreters, and thus they are useful whenever we wish to minimize our trusted base. Methods are statically closed over lexical environments, but dynamically scoped over assumption bases. They can take other methods as arguments, they can iterate, and they can branch conditionally. These capabilities, in tandem with the bifurcated syntax of type-omega DPLs and their dynamic assumption-base semantics, allow the user to define methods in a style that is disciplined enough to ensure soundness yet fluid enough to permit succinct and perspicuous expression of arbitrarily sophisticated derived inference rules. We demonstrate every major feature of type-omega DPLs by defining and studying NDL-omega, a higher-order, lexically scoped, call-by-value type-omega DPL for classical zero-order natural deduction---a simple choice that allows us to focus on type-omega syntax and semantics rather than on the subtleties of the underlying logic. We start by illustrating how type-alpha DPLs naturally lead to type-omega DPLs by way of abstraction; present the formal syntax and semantics of NDL-omega; prove several results about it, including soundness; give numerous examples of methods; point out connections to the lambda-phi calculus, a very general framework for type-omega DPLs; introduce a notion of computational and deductive cost; define several instrumented interpreters for computing such costs and for generating certificates; explore the use of type-omega DPLs as general programming languages; show that DPLs do not have to be type-less by formulating a static Hindley-Milner polymorphic type system for NDL-omega; discuss some idiosyncrasies of type-omega DPLs such as the potential divergence of proof checking; and compare type-omega DPLs to other approaches to proof presentation and discovery. Finally, a complete implementation of NDL-omega in SML-NJ is given for users who want to run the examples and experiment with the language.
Resumo:
This project investigates the computational representation of differentiable manifolds, with the primary goal of solving partial differential equations using multiple coordinate systems on general n- dimensional spaces. In the process, this abstraction is used to perform accurate integrations of ordinary differential equations using multiple coordinate systems. In the case of linear partial differential equations, however, unexpected difficulties arise even with the simplest equations.
Resumo:
The work reported here lies in the area of overlap between artificial intelligence software engineering. As research in artificial intelligence, it is a step towards a model of problem solving in the domain of programming. In particular, this work focuses on the routine aspects of programming which involve the application of previous experience with similar programs. I call this programming by inspection. Programming is viewed here as a kind of engineering activity. Analysis and synthesis by inspection area prominent part of expert problem solving in many other engineering disciplines, such as electrical and mechanical engineering. The notion of inspections methods in programming developed in this work is motivated by similar notions in other areas of engineering. This work is also motivated by current practical concerns in the area of software engineering. The inadequacy of current programming technology is universally recognized. Part of the solution to this problem will be to increase the level of automation in programming. I believe that the next major step in the evolution of more automated programming will be interactive systems which provide a mixture of partially automated program analysis, synthesis and verification. One such system being developed at MIT, called the programmer's apprentice, is the immediate intended application of this work. This report concentrates on the knowledge are of the programmer's apprentice, which is the form of a taxonomy of commonly used algorithms and data structures. To the extent that a programmer is able to construct and manipulate programs in terms of the forms in such a taxonomy, he may relieve himself of many details and generally raise the conceptual level of his interaction with the system, as compared with present day programming environments. Also, since it is practical to expand a great deal of effort pre-analyzing the entries in a library, the difficulty of verifying the correctness of programs constructed this way is correspondingly reduced. The feasibility of this approach is demonstrated by the design of an initial library of common techniques for manipulating symbolic data. This document also reports on the further development of a formalism called the plan calculus for specifying computations in a programming language independent manner. This formalism combines both data and control abstraction in a uniform framework that has facilities for representing multiple points of view and side effects.
Resumo:
Fine-grained parallel machines have the potential for very high speed computation. To program massively-concurrent MIMD machines, programmers need tools for managing complexity. These tools should not restrict program concurrency. Concurrent Aggregates (CA) provides multiple-access data abstraction tools, Aggregates, which can be used to implement abstractions with virtually unlimited potential for concurrency. Such tools allow programmers to modularize programs without reducing concurrency. I describe the design, motivation, implementation and evaluation of Concurrent Aggregates. CA has been used to construct a number of application programs. Multi-access data abstractions are found to be useful in constructing highly concurrent programs.
Resumo:
Traditionally, we've focussed on the question of how to make a system easy to code the first time, or perhaps on how to ease the system's continued evolution. But if we look at life cycle costs, then we must conclude that the important question is how to make a system easy to operate. To do this we need to make it easy for the operators to see what's going on and to then manipulate the system so that it does what it is supposed to. This is a radically different criterion for success. What makes a computer system visible and controllable? This is a difficult question, but it's clear that today's modern operating systems with nearly 50 million source lines of code are neither. Strikingly, the MIT Lisp Machine and its commercial successors provided almost the same functionality as today's mainstream sytsems, but with only 1 Million lines of code. This paper is a retrospective examination of the features of the Lisp Machine hardware and software system. Our key claim is that by building the Object Abstraction into the lowest tiers of the system, great synergy and clarity were obtained. It is our hope that this is a lesson that can impact tomorrow's designs. We also speculate on how the spirit of the Lisp Machine could be extended to include a comprehensive access control model and how new layers of abstraction could further enrich this model.