2 resultados para ANESTHETICS, Volatile: sevoflurane

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional floating gate non-volatile memories (NVMs) present critical issues for device scalability beyond the sub-90 nm node, such as gate length and tunnel oxide thickness reduction. Nanocrystalline germanium (nc-Ge) quantum dot flash memories are fully CMOS compatible technology based on discrete isolated charge storage nodules which have the potential of pushing further the scalability of conventional NVMs. Quantum dot memories offer lower operating voltages as compared to conventional floating-gate (FG) Flash memories due to thinner tunnel dielectrics which allow higher tunneling probabilities. The isolated charge nodules suppress charge loss through lateral paths, thereby achieving a superior charge retention time. Despite the considerable amount of efforts devoted to the study of nanocrystal Flash memories, the charge storage mechanism remains obscure. Interfacial defects of the nanocrystals seem to play a role in charge storage in recent studies, although storage in the nanocrystal conduction band by quantum confinement has been reported earlier. In this work, a single transistor memory structure with threshold voltage shift, Vth, exceeding ~1.5 V corresponding to interface charge trapping in nc-Ge, operating at 0.96 MV/cm, is presented. The trapping effect is eliminated when nc-Ge is synthesized in forming gas thus excluding the possibility of quantum confinement and Coulomb blockade effects. Through discharging kinetics, the model of deep level trap charge storage is confirmed. The trap energy level is dependent on the matrix which confines the nc-Ge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urban air pollution and climate are closely connected due to shared generating processes (e.g., combustion) for emissions of the driving gases and aerosols. They are also connected because the atmospheric lifecycles of common air pollutants such as CO, NOx and VOCs, and of the climatically important methane gas (CH4) and sulfate aerosols, both involve the fast photochemistry of the hydroxyl free radical (OH). Thus policies designed to address air pollution may impact climate and vice versa. We present calculations using a model coupling economics, atmospheric chemistry, climate and ecosystems to illustrate some effects of air pollution policy alone on global warming. We consider caps on emissions of NOx, CO, volatile organic carbon, and SOx both individually and combined in two ways. These caps can lower ozone causing less warming, lower sulfate aerosols yielding more warming, lower OH and thus increase CH4 giving more warming, and finally, allow more carbon uptake by ecosystems leading to less warming. Overall, these effects significantly offset each other suggesting that air pollution policy has a relatively small net effect on the global mean surface temperature and sea level rise. However, our study does not account for the effects of air pollution policies on overall demand for fossil fuels and on the choice of fuels (coal, oil, gas), nor have we considered the effects of caps on black carbon or organic carbon aerosols on climate. These effects, if included, could lead to more substantial impacts of capping pollutant emissions on global temperature and sea level than concluded here. Caps on aerosols in general could also yield impacts on other important aspects of climate beyond those addressed here, such as the regional patterns of cloudiness and precipitation.