3 resultados para 410203 Photography

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new method to describe, in a single image, changes in shape over time. We acquire both range and image information with a stationary stereo camera. From the pictures taken, we display a composite image consisting of the image data from the surface closest to the camera at every pixel. This reveals the 3-d relationships over time by easy-to-interpret occlusion relationships in the composite image. We call the composite a shape-time photograph. Small errors in depth measurements cause artifacts in the shape-time images. We correct most of these using a Markov network to estimate the most probable front surface, taking into account the depth measurements, their uncertainties, and layer continuity assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We enhance photographs shot in dark environments by combining a picture taken with the available light and one taken with the flash. We preserve the ambiance of the original lighting and insert the sharpness from the flash image. We use the bilateral filter to decompose the images into detail and large scale. We reconstruct the image using the large scale of the available lighting and the detail of the flash. We detect and correct flash shadows. This combines the advantages of available illumination and flash photography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through microfabricated planar abrupt contraction-expansions is investigated. The contraction geometries are fabricated from a high-resolution chrome mask and cross-linked PDMS gels using the tools of soft-lithography. The small length scales and high deformation rates in the contraction throat lead to significant extensional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. The dimensionless extra pressure drop across the contraction increases by more than 200% and is accompanied by significant upstream vortex growth. Streak photography and videomicroscopy using epifluorescent particles shows that the flow ultimately becomes unstable and three-dimensional. The moderate Reynolds numbers (0.03 ≤ Re ≤ 44) associated with these high Deborah number (0 ≤ De ≤ 600) microfluidic flows results in the exploration of new regions of the Re-De parameter space in which the effects of both elasticity and inertia can be observed. Understanding such interactions will be increasingly important in microfluidic applications involving complex fluids and can best be interpreted in terms of the elasticity number, El = De/Re, which is independent of the flow kinematics and depends only on the fluid rheology and the characteristic size of the device.