6 resultados para 3D motion trajectory

em Massachusetts Institute of Technology


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A typical robot vision scenario might involve a vehicle moving with an unknown 3D motion (translation and rotation) while taking intensity images of an arbitrary environment. This paper describes the theory and implementation issues of tracking any desired point in the environment. This method is performed completely in software without any need to mechanically move the camera relative to the vehicle. This tracking technique is simple an inexpensive. Furthermore, it does not use either optical flow or feature correspondence. Instead, the spatio-temporal gradients of the input intensity images are used directly. The experimental results presented support the idea of tracking in software. The final result is a sequence of tracked images where the desired point is kept stationary in the images independent of the nature of the relative motion. Finally, the quality of these tracked images are examined using spatio-temporal gradient maps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structure from motion often refers to the computation of 3D structure from a matched sequence of images. However, a depth map of a surface is difficult to compute and may not be a good representation for storage and recognition. Given matched images, I will first show that the sign of the normal curvature in a given direction at a given point in the image can be computed from a simple difference of slopes of line-segments in one image. Using this result, local surface patches can be classified as convex, concave, parabolic (cylindrical), hyperbolic (saddle point) or planar. At the same time the translational component of the optical flow is obtained, from which the focus of expansion can be computed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present psychophysical experiments that measure the accuracy of perceived 3D structure derived from relative image motion. The experiments are motivated by Ullman's incremental rigidity scheme, which builds up 3D structure incrementally over an extended time. Our main conclusions are: first, the human system derives an accurate model of the relative depths of moving points, even in the presence of noise; second, the accuracy of 3D structure improves with time, eventually reaching a plateau; and third, the 3D structure currently perceived depends on previous 3D models. Through computer simulations, we relate the psychophysical observations to the behavior of Ullman's model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a new method for motion estimation and 3D reconstruction from stereo image sequences obtained by a stereo rig moving through a rigid world. We show that given two stereo pairs one can compute the motion of the stereo rig directly from the image derivatives (spatial and temporal). Correspondences are not required. One can then use the images from both pairs combined to compute a dense depth map. The motion estimates between stereo pairs enable us to combine depth maps from all the pairs in the sequence to form an extended scene reconstruction and we show results from a real image sequence. The motion computation is a linear least squares computation using all the pixels in the image. Areas with little or no contrast are implicitly weighted less so one does not have to explicitly apply a confidence measure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stereopsis and motion parallax are two methods for recovering three dimensional shape. Theoretical analyses of each method show that neither alone can recover rigid 3D shapes correctly unless other information, such as perspective, is included. The solutions for recovering rigid structure from motion have a reflection ambiguity; the depth scale of the stereoscopic solution will not be known unless the fixation distance is specified in units of interpupil separation. (Hence the configuration will appear distorted.) However, the correct configuration and the disposition of a rigid 3D shape can be recovered if stereopsis and motion are integrated, for then a unique solution follows from a set of linear equations. The correct interpretation requires only three points and two stereo views.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the differences --- conceptually and algorithmically --- between affine and projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It is shown that an affine invariant exists between any view and a fixed view chosen as a reference view. This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for visual recognition, projective invariants are not really necessary. We then use the affine invariant to derive new algebraic connections between perspective views. It is shown that three perspective views of an object are connected by certain algebraic functions of image coordinates alone (no structure or camera geometry needs to be involved).