5 resultados para 080109 Pattern Recognition and Data Mining
em Massachusetts Institute of Technology
Resumo:
The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.
Resumo:
Humans distinguish materials such as metal, plastic, and paper effortlessly at a glance. Traditional computer vision systems cannot solve this problem at all. Recognizing surface reflectance properties from a single photograph is difficult because the observed image depends heavily on the amount of light incident from every direction. A mirrored sphere, for example, produces a different image in every environment. To make matters worse, two surfaces with different reflectance properties could produce identical images. The mirrored sphere simply reflects its surroundings, so in the right artificial setting, it could mimic the appearance of a matte ping-pong ball. Yet, humans possess an intuitive sense of what materials typically "look like" in the real world. This thesis develops computational algorithms with a similar ability to recognize reflectance properties from photographs under unknown, real-world illumination conditions. Real-world illumination is complex, with light typically incident on a surface from every direction. We find, however, that real-world illumination patterns are not arbitrary. They exhibit highly predictable spatial structure, which we describe largely in the wavelet domain. Although they differ in several respects from the typical photographs, illumination patterns share much of the regularity described in the natural image statistics literature. These properties of real-world illumination lead to predictable image statistics for a surface with given reflectance properties. We construct a system that classifies a surface according to its reflectance from a single photograph under unknown illuminination. Our algorithm learns relationships between surface reflectance and certain statistics computed from the observed image. Like the human visual system, we solve the otherwise underconstrained inverse problem of reflectance estimation by taking advantage of the statistical regularity of illumination. For surfaces with homogeneous reflectance properties and known geometry, our system rivals human performance.
Resumo:
Human object recognition is generally considered to tolerate changes of the stimulus position in the visual field. A number of recent studies, however, have cast doubt on the completeness of translation invariance. In a new series of experiments we tried to investigate whether positional specificity of short-term memory is a general property of visual perception. We tested same/different discrimination of computer graphics models that were displayed at the same or at different locations of the visual field, and found complete translation invariance, regardless of the similarity of the animals and irrespective of direction and size of the displacement (Exp. 1 and 2). Decisions were strongly biased towards same decisions if stimuli appeared at a constant location, while after translation subjects displayed a tendency towards different decisions. Even if the spatial order of animal limbs was randomized ("scrambled animals"), no deteriorating effect of shifts in the field of view could be detected (Exp. 3). However, if the influence of single features was reduced (Exp. 4 and 5) small but significant effects of translation could be obtained. Under conditions that do not reveal an influence of translation, rotation in depth strongly interferes with recognition (Exp. 6). Changes of stimulus size did not reduce performance (Exp. 7). Tolerance to these object transformations seems to rely on different brain mechanisms, with translation and scale invariance being achieved in principle, while rotation invariance is not.
Resumo:
To recognize a previously seen object, the visual system must overcome the variability in the object's appearance caused by factors such as illumination and pose. Developments in computer vision suggest that it may be possible to counter the influence of these factors, by learning to interpolate between stored views of the target object, taken under representative combinations of viewing conditions. Daily life situations, however, typically require categorization, rather than recognition, of objects. Due to the open-ended character both of natural kinds and of artificial categories, categorization cannot rely on interpolation between stored examples. Nonetheless, knowledge of several representative members, or prototypes, of each of the categories of interest can still provide the necessary computational substrate for the categorization of new instances. The resulting representational scheme based on similarities to prototypes appears to be computationally viable, and is readily mapped onto the mechanisms of biological vision revealed by recent psychophysical and physiological studies.
Resumo:
The COntext INterchange (COIN) strategy is an approach to solving the problem of interoperability of semantically heterogeneous data sources through context mediation. COIN has used its own notation and syntax for representing ontologies. More recently, the OWL Web Ontology Language is becoming established as the W3C recommended ontology language. We propose the use of the COIN strategy to solve context disparity and ontology interoperability problems in the emerging Semantic Web – both at the ontology level and at the data level. In conjunction with this, we propose a version of the COIN ontology model that uses OWL and the emerging rules interchange language, RuleML.