35 resultados para Object Segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, we've focussed on the question of how to make a system easy to code the first time, or perhaps on how to ease the system's continued evolution. But if we look at life cycle costs, then we must conclude that the important question is how to make a system easy to operate. To do this we need to make it easy for the operators to see what's going on and to then manipulate the system so that it does what it is supposed to. This is a radically different criterion for success. What makes a computer system visible and controllable? This is a difficult question, but it's clear that today's modern operating systems with nearly 50 million source lines of code are neither. Strikingly, the MIT Lisp Machine and its commercial successors provided almost the same functionality as today's mainstream sytsems, but with only 1 Million lines of code. This paper is a retrospective examination of the features of the Lisp Machine hardware and software system. Our key claim is that by building the Object Abstraction into the lowest tiers of the system, great synergy and clarity were obtained. It is our hope that this is a lesson that can impact tomorrow's designs. We also speculate on how the spirit of the Lisp Machine could be extended to include a comprehensive access control model and how new layers of abstraction could further enrich this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report explores methods for determining the pose of a grasped object using only limited sensor information. The problem of pose determination is to find the position of an object relative to the hand. The information is useful when grasped objects are being manipulated. The problem is hard because of the large space of grasp configurations and the large amount of uncertainty inherent in dexterous hand control. By studying limited sensing approaches, the problem's inherent constraints can be better understood. This understanding helps to show how additional sensor data can be used to make recognition methods more effective and robust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well. The motivation for developing a component based approach is two fold: first, to enhance the performance of person detection systems on frontal and rear views of people and second, to develop a framework that directly addresses the problem of detecting people who are partially occluded or whose body parts blend in with the background. The data classification is handled by several support vector machine classifiers arranged in two layers. This architecture is known as Adaptive Combination of Classifiers (ACC). The system performs very well and is capable of detecting people even when all components of a person are not found. The performance of the system is significantly better than a full body person detector designed along similar lines. This suggests that the improved performance is due to the components based approach and the ACC data classification structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents there important results in visual object recognition based on shape. (1) A new algorithm (RAST; Recognition by Adaptive Sudivisions of Tranformation space) is presented that has lower average-case complexity than any known recognition algorithm. (2) It is shown, both theoretically and empirically, that representing 3D objects as collections of 2D views (the "View-Based Approximation") is feasible and affects the reliability of 3D recognition systems no more than other commonly made approximations. (3) The problem of recognition in cluttered scenes is considered from a Bayesian perspective; the commonly-used "bounded-error errorsmeasure" is demonstrated to correspond to an independence assumption. It is shown that by modeling the statistical properties of real-scenes better, objects can be recognized more reliably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a type-based approach to statically derive symbolic closed-form formulae that characterize the bounds of heap memory usages of programs written in object-oriented languages. Given a program with size and alias annotations, our inference system will compute the amount of memory required by the methods to execute successfully as well as the amount of memory released when methods return. The obtained analysis results are useful for networked devices with limited computational resources as well as embedded software.