32 resultados para Automatic Recognition
Resumo:
This thesis presents there important results in visual object recognition based on shape. (1) A new algorithm (RAST; Recognition by Adaptive Sudivisions of Tranformation space) is presented that has lower average-case complexity than any known recognition algorithm. (2) It is shown, both theoretically and empirically, that representing 3D objects as collections of 2D views (the "View-Based Approximation") is feasible and affects the reliability of 3D recognition systems no more than other commonly made approximations. (3) The problem of recognition in cluttered scenes is considered from a Bayesian perspective; the commonly-used "bounded-error errorsmeasure" is demonstrated to correspond to an independence assumption. It is shown that by modeling the statistical properties of real-scenes better, objects can be recognized more reliably.
Resumo:
Artifacts made by humans, such as items of furniture and houses, exhibit an enormous amount of variability in shape. In this paper, we concentrate on models of the shapes of objects that are made up of fixed collections of sub-parts whose dimensions and spatial arrangement exhibit variation. Our goals are: to learn these models from data and to use them for recognition. Our emphasis is on learning and recognition from three-dimensional data, to test the basic shape-modeling methodology. In this paper we also demonstrate how to use models learned in three dimensions for recognition of two-dimensional sketches of objects.