25 resultados para robots antropomórficos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are investigating how to program robots so that they learn from experience. Our goal is to develop principled methods of learning that can improve a robot's performance of a wide range of dynamic tasks. We have developed task-level learning that successfully improves a robot's performance of two complex tasks, ball-throwing and juggling. With task- level learning, a robot practices a task, monitors its own performance, and uses that experience to adjust its task-level commands. This learning method serves to complement other approaches, such as model calibration, for improving robot performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robots must act purposefully and successfully in an uncertain world. Sensory information is inaccurate or noisy, actions may have a range of effects, and the robot's environment is only partially and imprecisely modeled. This thesis introduces active randomization by a robot, both in selecting actions to execute and in focusing on sensory information to interpret, as a basic tool for overcoming uncertainty. An example of randomization is given by the strategy of shaking a bin containing a part in order to orient the part in a desired stable state with some high probability. Another example consists of first using reliable sensory information to bring two parts close together, then relying on short random motions to actually mate the two parts, once the part motions lie below the available sensing resolution. Further examples include tapping parts that are tightly wedged, twirling gears before trying to mesh them, and vibrating parts to facilitate a mating operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a simple method for internal camera calibration for computer vision. This method is based on tracking image features through a sequence of images while the camera undergoes pure rotation. The location of the features relative to the camera or to each other need not be known and therefore this method can be used both for laboratory calibration and for self calibration in autonomous robots working in unstructured environments. A second method of calibration is also presented. This method uses simple geometric objects such as spheres and straight lines to The camera parameters. Calibration is performed using both methods and the results compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report addresses the problem of achieving cooperation within small- to medium- sized teams of heterogeneous mobile robots. I describe a software architecture I have developed, called ALLIANCE, that facilitates robust, fault tolerant, reliable, and adaptive cooperative control. In addition, an extended version of ALLIANCE, called L-ALLIANCE, is described, which incorporates a dynamic parameter update mechanism that allows teams of mobile robots to improve the efficiency of their mission performance through learning. A number of experimental results of implementing these architectures on both physical and simulated mobile robot teams are described. In addition, this report presents the results of studies of a number of issues in mobile robot cooperation, including fault tolerant cooperative control, adaptive action selection, distributed control, robot awareness of team member actions, improving efficiency through learning, inter-robot communication, action recognition, and local versus global control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The control of aerial gymnastic maneuvers is challenging because these maneuvers frequently involve complex rotational motion and because the performer has limited control of the maneuver during flight. A performer can influence a maneuver using a sequence of limb movements during flight. However, the same sequence may not produce reliable performances in the presence of off-nominal conditions. How do people compensate for variations in performance to reliably produce aerial maneuvers? In this report I explore the role that passive dynamic stability may play in making the performance of aerial maneuvers simple and reliable. I present a control strategy comprised of active and passive components for performing robot front somersaults in the laboratory. I show that passive dynamics can neutrally stabilize the layout somersault which involves an "inherently unstable" rotation about the intermediate principal axis. And I show that a strategy that uses open loop joint torques plus passive dynamics leads to more reliable 1 1/2 twisting front somersaults in simulation than a strategy that uses prescribed limb motion. Results are presented from laboratory experiments on gymnastic robots, from dynamic simulation of humans and robots, and from linear stability analyses of these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transformation from high level task specification to low level motion control is a fundamental issue in sensorimotor control in animals and robots. This thesis develops a control scheme called virtual model control which addresses this issue. Virtual model control is a motion control language which uses simulations of imagined mechanical components to create forces, which are applied through joint torques, thereby creating the illusion that the components are connected to the robot. Due to the intuitive nature of this technique, designing a virtual model controller requires the same skills as designing the mechanism itself. A high level control system can be cascaded with the low level virtual model controller to modulate the parameters of the virtual mechanisms. Discrete commands from the high level controller would then result in fluid motion. An extension of Gardner's Partitioned Actuator Set Control method is developed. This method allows for the specification of constraints on the generalized forces which each serial path of a parallel mechanism can apply. Virtual model control has been applied to a bipedal walking robot. A simple algorithm utilizing a simple set of virtual components has successfully compelled the robot to walk eight consecutive steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since robots are typically designed with an individual actuator at each joint, the control of these systems is often difficult and non-intuitive. This thesis explains a more intuitive control scheme called Virtual Model Control. This thesis also demonstrates the simplicity and ease of this control method by using it to control a simulated walking hexapod. Virtual Model Control uses imagined mechanical components to create virtual forces, which are applied through the joint torques of real actuators. This method produces a straightforward means of controlling joint torques to produce a desired robot behavior. Due to the intuitive nature of this control scheme, the design of a virtual model controller is similar to the design of a controller with basic mechanical components. The ease of this control scheme facilitates the use of a high level control system which can be used above the low level virtual model controllers to modulate the parameters of the imaginary mechanical components. In order to apply Virtual Model Control to parallel mechanisms, a solution to the force distribution problem is required. This thesis uses an extension of Gardner`s Partitioned Force Control method which allows for the specification of constrained degrees of freedom. This virtual model control technique was applied to a simulated hexapod robot. Although the hexapod is a highly non-linear, parallel mechanism, the virtual models allowed text-book control solutions to be used while the robot was walking. Using a simple linear control law, the robot walked while simultaneously balancing a pendulum and tracking an object.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fast simulated annealing algorithm is developed for automatic object recognition. The normalized correlation coefficient is used as a measure of the match between a hypothesized object and an image. Templates are generated on-line during the search by transforming model images. Simulated annealing reduces the search time by orders of magnitude with respect to an exhaustive search. The algorithm is applied to the problem of how landmarks, for example, traffic signs, can be recognized by an autonomous vehicle or a navigating robot. The algorithm works well in noisy, real-world images of complicated scenes for model images with high information content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capability of estimating the walking direction of people would be useful in many applications such as those involving autonomous cars and robots. We introduce an approach for estimating the walking direction of people from images, based on learning the correct classification of a still image by using SVMs. We find that the performance of the system can be improved by classifying each image of a walking sequence and combining the outputs of the classifier. Experiments were performed to evaluate our system and estimate the trade-off between number of images in walking sequences and performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce basic behaviors as primitives for control and learning in situated, embodied agents interacting in complex domains. We propose methods for selecting, formally specifying, algorithmically implementing, empirically evaluating, and combining behaviors from a basic set. We also introduce a general methodology for automatically constructing higher--level behaviors by learning to select from this set. Based on a formulation of reinforcement learning using conditions, behaviors, and shaped reinforcement, out approach makes behavior selection learnable in noisy, uncertain environments with stochastic dynamics. All described ideas are validated with groups of up to 20 mobile robots performing safe--wandering, following, aggregation, dispersion, homing, flocking, foraging, and learning to forage.