20 resultados para Symbolic appropriation
Resumo:
A system for visual recognition is described, with implications for the general problem of representation of knowledge to assist control. The immediate objective is a computer system that will recognize objects in a visual scene, specifically hammers. The computer receives an array of light intensities from a device like a television camera. It is to locate and identify the hammer if one is present. The computer must produce from the numerical "sensory data" a symbolic description that constitutes its perception of the scene. Of primary concern is the control of the recognition process. Control decisions should be guided by the partial results obtained on the scene. If a hammer handle is observed this should suggest that the handle is part of a hammer and advise where to look for the hammer head. The particular knowledge that a handle has been found combines with general knowledge about hammers to influence the recognition process. This use of knowledge to direct control is denoted here by the term "active knowledge". A descriptive formalism is presented for visual knowledge which identifies the relationships relevant to the active use of the knowledge. A control structure is provided which can apply knowledge organized in this fashion actively to the processing of a given scene.
Resumo:
This dissertation presents a model of the knowledge a person has about the spatial structure of a large-scale environment: the "cognitive map". The functions of the cognitive map are to assimilate new information about the environment, to represent the current position, and to answer route-finding and relative-position problems. This model (called the TOUR model) analyzes the cognitive map in terms of symbolic descriptions of the environment and operations on those descriptions. Knowledge about a particular environment is represented in terms of route descriptions, a topological network of paths and places, multiple frames of reference for relative positions, dividing boundaries, and a structure of containing regions. The current position is described by the "You Are Here" pointer, which acts as a working memory and a focus of attention. Operations on the cognitive map are performed by inference rules which act to transfer information among different descriptions and the "You Are Here" pointer. The TOUR model shows how the particular descriptions chosen to represent spatial knowledge support assimilation of new information from local observations into the cognitive map, and how the cognitive map solves route-finding and relative-position problems. A central theme of this research is that the states of partial knowledge supported by a representation are responsible for its ability to function with limited information of computational resources. The representations in the TOUR model provide a rich collection of states of partial knowledge, and therefore exhibit flexible, "common-sense" behavior.
Resumo:
This report describes the implementation of a theory of edge detection, proposed by Marr and Hildreth (1979). According to this theory, the image is first processed independently through a set of different size filters, whose shape is the Laplacian of a Gaussian, ***. Zero-crossings in the output of these filters mark the positions of intensity changes at different resolutions. Information about these zero-crossings is then used for deriving a full symbolic description of changes in intensity in the image, called the raw primal sketch. The theory is closely tied with early processing in the human visual systems. In this report, we first examine the critical properties of the initial filters used in the edge detection process, both from a theoretical and practical standpoint. The implementation is then used as a test bed for exploring aspects of the human visual system; in particular, acuity and hyperacuity. Finally, we present some preliminary results concerning the relationship between zero-crossings detected at different resolutions, and some observations relevant to the process by which the human visual system integrates descriptions of intensity changes obtained at different resolutions.
Resumo:
The work reported here lies in the area of overlap between artificial intelligence software engineering. As research in artificial intelligence, it is a step towards a model of problem solving in the domain of programming. In particular, this work focuses on the routine aspects of programming which involve the application of previous experience with similar programs. I call this programming by inspection. Programming is viewed here as a kind of engineering activity. Analysis and synthesis by inspection area prominent part of expert problem solving in many other engineering disciplines, such as electrical and mechanical engineering. The notion of inspections methods in programming developed in this work is motivated by similar notions in other areas of engineering. This work is also motivated by current practical concerns in the area of software engineering. The inadequacy of current programming technology is universally recognized. Part of the solution to this problem will be to increase the level of automation in programming. I believe that the next major step in the evolution of more automated programming will be interactive systems which provide a mixture of partially automated program analysis, synthesis and verification. One such system being developed at MIT, called the programmer's apprentice, is the immediate intended application of this work. This report concentrates on the knowledge are of the programmer's apprentice, which is the form of a taxonomy of commonly used algorithms and data structures. To the extent that a programmer is able to construct and manipulate programs in terms of the forms in such a taxonomy, he may relieve himself of many details and generally raise the conceptual level of his interaction with the system, as compared with present day programming environments. Also, since it is practical to expand a great deal of effort pre-analyzing the entries in a library, the difficulty of verifying the correctness of programs constructed this way is correspondingly reduced. The feasibility of this approach is demonstrated by the design of an initial library of common techniques for manipulating symbolic data. This document also reports on the further development of a formalism called the plan calculus for specifying computations in a programming language independent manner. This formalism combines both data and control abstraction in a uniform framework that has facilities for representing multiple points of view and side effects.
Resumo:
A prototype presentation system base is described. It offers mechanisms, tools, and ready-made parts for building user interfaces. A general user interface model underlies the base, organized around the concept of a presentation: a visible text or graphic for conveying information. Te base and model emphasize domain independence and style independence, to apply to the widest possible range of interfaces. The primitive presentation system model treats the interface as a system of processes maintaining a semantic relation between an application data base and a presentation data base, the symbolic screen description containing presentations. A presenter continually updates the presentation data base from the application data base. The user manipulates presentations with a presentation editor. A recognizer translates the user's presentation manipulation into application data base commands. The primitive presentation system can be extended to model more complex systems by attaching additional presentation systems. In order to illustrate the model's generality and descriptive capabilities, extended model structures for several existing user interfaces are discussed. The base provides support for building the application and presentation data bases, linked together into a single, uniform network, including descriptions of classes of objects as we as the objects themselves. The base provides an initial presentation data base network graphics to continually display it, and editing functions. A variety of tools and mechanisms help create and control presenters and recognizers. To demonstrate the base's utility, three interfaces to an operating system were constructed, embodying different styles: icons, menu, and graphical annotation.