17 resultados para Robertson, William, 1721-1793.
Resumo:
Two formulations of model-based object recognition are described. MAP Model Matching evaluates joint hypotheses of match and pose, while Posterior Marginal Pose Estimation evaluates the pose only. Local search in pose space is carried out with the Expectation--Maximization (EM) algorithm. Recognition experiments are described where the EM algorithm is used to refine and evaluate pose hypotheses in 2D and 3D. Initial hypotheses for the 2D experiments were generated by a simple indexing method: Angle Pair Indexing. The Linear Combination of Views method of Ullman and Basri is employed as the projection model in the 3D experiments.
Resumo:
This paper reports on results from five companies in the aerospace and automotive industries to show that over-commitment of technical professionals and under-representation of key skills on technology development and transition teams seriously impairs team performance. The research finds that 40 percent of the projects studied were inadequately staffed, resulting in weaker team communications and alignment. Most importantly, the weak staffing on these teams is found to be associated with a doubling of project failure rate to reach full production. Those weakly staffed teams that did successfully insert technology into production systems were also much more likely than other teams to have development delays and late engineering changes. The conclusion suggests that the expense of project failure, delay and late engineering changes in these companies must greatly out-weigh the savings gained from reduced staffing costs, and that this problem is likely going to be found in other technology-intensive firms intent on seeing project budgets as a cost to be minimized rather than an investment to be maximized.