18 resultados para Image orientation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problems under consideration center around the interpretation of binocular stereo disparity. In particular, the goal is to establish a set of mappings from stereo disparity to corresponding three-dimensional scene geometry. An analysis has been developed that shows how disparity information can be interpreted in terms of three-dimensional scene properties, such as surface depth, discontinuities, and orientation. These theoretical developments have been embodied in a set of computer algorithms for the recovery of scene geometry from input stereo disparity. The results of applying these algorithms to several disparity maps are presented. Comparisons are made to the interpretation of stereo disparity by biological systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis addresses the problem of recognizing solid objects in the three-dimensional world, using two-dimensional shape information extracted from a single image. Objects can be partly occluded and can occur in cluttered scenes. A model based approach is taken, where stored models are matched to an image. The matching problem is separated into two stages, which employ different representations of objects. The first stage uses the smallest possible number of local features to find transformations from a model to an image. This minimizes the amount of search required in recognition. The second stage uses the entire edge contour of an object to verify each transformation. This reduces the chance of finding false matches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid judgments about the properties and spatial relations of objects are the crux of visually guided interaction with the world. Vision begins, however, with essentially pointwise representations of the scene, such as arrays of pixels or small edge fragments. For adequate time-performance in recognition, manipulation, navigation, and reasoning, the processes that extract meaningful entities from the pointwise representations must exploit parallelism. This report develops a framework for the fast extraction of scene entities, based on a simple, local model of parallel computation.sAn image chunk is a subset of an image that can act as a unit in the course of spatial analysis. A parallel preprocessing stage constructs a variety of simple chunks uniformly over the visual array. On the basis of these chunks, subsequent serial processes locate relevant scene components and assemble detailed descriptions of them rapidly. This thesis defines image chunks that facilitate the most potentially time-consuming operations of spatial analysis---boundary tracing, area coloring, and the selection of locations at which to apply detailed analysis. Fast parallel processes for computing these chunks from images, and chunk-based formulations of indexing, tracing, and coloring, are presented. These processes have been simulated and evaluated on the lisp machine and the connection machine.