22 resultados para representation theorems
Resumo:
Most knowledge representation languages are based on classes and taxonomic relationships between classes. Taxonomic hierarchies without defaults or exceptions are semantically equivalent to a collection of formulas in first order predicate calculus. Although designers of knowledge representation languages often express an intuitive feeling that there must be some advantage to representing facts as taxonomic relationships rather than first order formulas, there are few, if any, technical results supporting this intuition. We attempt to remedy this situation by presenting a taxonomic syntax for first order predicate calculus and a series of theorems that support the claim that taxonomic syntax is superior to classical syntax.
Resumo:
We explore representation of 3D objects in which several distinct 2D views are stored for each object. We demonstrate the ability of a two-layer network of thresholded summation units to support such representations. Using unsupervised Hebbian relaxation, we trained the network to recognise ten objects from different viewpoints. The training process led to the emergence of compact representations of the specific input views. When tested on novel views of the same objects, the network exhibited a substantial generalisation capability. In simulated psychophysical experiments, the network's behavior was qualitatively similar to that of human subjects.
Resumo:
How can one compute qualitative properties of the optical flow, such as expansion or rotation, in a way which is robust and invariant to the position of the focus of expansion or the center of rotation? We suggest a particularly simple algorithm, well-suited to VLSI implementations, that exploits well-known relations between the integral and differential properties of vector fields and their linear behaviour near singularities.
Resumo:
The interpretation and recognition of noisy contours, such as silhouettes, have proven to be difficult. One obstacle to the solution of these problems has been the lack of a robust representation for contours. The contour is represented by a set of pairwise tangent circular arcs. The advantage of such an approach is that mathematical properties such as orientation and curvature are explicityly represented. We introduce a smoothing criterion for the contour tht optimizes the tradeoff between the complexity of the contour and proximity of the data points. The complexity measure is the number of extrema of curvature present in the contour. The smoothing criterion leads us to a true scale-space for contours. We describe the computation of the contour representation as well as the computation of relevant properties of the contour. We consider the potential application of the representation, the smoothing paradigm, and the scale-space to contour interpretation and recognition.
Resumo:
Most reinforcement learning methods operate on propositional representations of the world state. Such representations are often intractably large and generalize poorly. Using a deictic representation is believed to be a viable alternative: they promise generalization while allowing the use of existing reinforcement-learning methods. Yet, there are few experiments on learning with deictic representations reported in the literature. In this paper we explore the effectiveness of two forms of deictic representation and a naive propositional representation in a simple blocks-world domain. We find, empirically, that the deictic representations actually worsen performance. We conclude with a discussion of possible causes of these results and strategies for more effective learning in domains with objects.
Resumo:
This paper explores the relationships between a computation theory of temporal representation (as developed by James Allen) and a formal linguistic theory of tense (as developed by Norbert Hornstein) and aspect. It aims to provide explicit answers to four fundamental questions: (1) what is the computational justification for the primitive of a linguistic theory; (2) what is the computational explanation of the formal grammatical constraints; (3) what are the processing constraints imposed on the learnability and markedness of these theoretical constructs; and (4) what are the constraints that a linguistic theory imposes on representations. We show that one can effectively exploit the interface between the language faculty and the cognitive faculties by using linguistic constraints to determine restrictions on the cognitive representation and vice versa. Three main results are obtained: (1) We derive an explanation of an observed grammatical constraint on tense?? Linear Order Constraint??m the information monotonicity property of the constraint propagation algorithm of Allen's temporal system: (2) We formulate a principle of markedness for the basic tense structures based on the computational efficiency of the temporal representations; and (3) We show Allen's interval-based temporal system is not arbitrary, but it can be used to explain independently motivated linguistic constraints on tense and aspect interpretations. We also claim that the methodology of research developed in this study??oss-level" investigation of independently motivated formal grammatical theory and computational models??a powerful paradigm with which to attack representational problems in basic cognitive domains, e.g., space, time, causality, etc.
Resumo:
This research is concerned with designing representations for analytical reasoning problems (of the sort found on the GRE and LSAT). These problems test the ability to draw logical conclusions. A computer program was developed that takes as input a straightforward predicate calculus translation of a problem, requests additional information if necessary, decides what to represent and how, designs representations capturing the constraints of the problem, and creates and executes a LISP program that uses those representations to produce a solution. Even though these problems are typically difficult for theorem provers to solve, the LISP program that uses the designed representations is very efficient.
Resumo:
This report shows how knowledge about the visual world can be built into a shape representation in the form of a descriptive vocabulary making explicit the important geometrical relationships comprising objects' shapes. Two computational tools are offered: (1) Shapestokens are placed on a Scale-Space Blackboard, (2) Dimensionality-reduction captures deformation classes in configurations of tokens. Knowledge lies in the token types and deformation classes tailored to the constraints and regularities ofparticular shape worlds. A hierarchical shape vocabulary has been implemented supporting several later visual tasks in the two-dimensional shape domain of the dorsal fins of fishes.
Resumo:
TYPICAL is a package for describing and making automatic inferences about a broad class of SCHEME predicate functions. These functions, called types following popular usage, delineate classes of primitive SCHEME objects, composite data structures, and abstract descriptions. TYPICAL types are generated by an extensible combinator language from either existing types or primitive terminals. These generated types are located in a lattice of predicate subsumption which captures necessary entailment between types; if satisfaction of one type necessarily entail satisfaction of another, the first type is below the second in the lattice. The inferences make by TYPICAL computes the position of the new definition within the lattice and establishes it there. This information is then accessible to both later inferences and other programs (reasoning systems, code analyzers, etc) which may need the information for their own purposes. TYPICAL was developed as a representation language for the discovery program Cyrano; particular examples are given of TYPICAL's application in the Cyrano program.
Resumo:
This paper describes ARLO, a representation language loosely modelled after Greiner and Lenant's RLL-1. ARLO is a structure-based representation language for describing structure-based representation languages, including itself. A given representation language is specified in ARLO by a collection of structures describing how its descriptions are interpreted, defaulted, and verified. This high level description is compiles into lisp code and ARLO structures whose interpretation fulfills the specified semantics of the representation. In addition, ARLO itself- as a representation language for expressing and compiling partial and complete language specifications- is described and interpreted in the same manner as the language it describes and implements. This self-description can be extended of modified to expand or alter the expressive power of ARLO's initial configuration. Languages which describe themselves like ARLO- provide powerful mediums for systems which perform automatic self-modification, optimization, debugging, or documentation. AI systems implemented in such a self-descriptive language can reflect on their own capabilities and limitations, applying general learning and problem solving strategies to enlarge or alleviate them.
Resumo:
A computer program, named ADEPT (A Distinctly Empirical Prover of Theorems), has been written which proves theorems taken from the abstract theory of groups. Its operation is basically heuristic, incorporating many of the techniques of the human mathematician in a "natural" way. This program has proved almost 100 theorems, as well as serving as a vehicle for testing and evaluating special-purpose heuristics. A detailed description of the program is supplemented by accounts of its performance on a number of theorems, thus providing many insights into the particular problems inherent in the design of a procedure capable of proving a variety of theorems from this domain. Suggestions have been formulated for further efforts along these lines, and comparisons with related work previously reported in the literature have been made.
Resumo:
Planner is a formalism for proving theorems and manipulating models in a robot. The formalism is built out of a number of problem-solving primitives together with a hierarchical multiprocess backtrack control structure. Statements can be asserted and perhaps later withdrawn as the state of the world changes. Under BACKTRACK control structure, the hierarchy of activations of functions previously executed is maintained so that it is possible to revert to any previous state. Thus programs can easily manipulate elaborate hypothetical tentative states. In addition PLANNER uses multiprocessing so that there can be multiple loci of changes in state. Goals can be established and dismissed when they are satisfied. The deductive system of PLANNER is subordinate to the hierarchical control structure in order to maintain the desired degree of control. The use of a general-purpose matching language as the basis of the deductive system increases the flexibility of the system. Instead of explicitly naming procedures in calls, procedures can be invoked implicitly by patterns of what the procedure is supposed to accomplish. The language is being applied to solve problems faced by a robot, to write special purpose routines from goal oriented language, to express and prove properties of procedures, to abstract procedures from protocols of their actions, and as a semantic base for English.
Resumo:
This report describes a system which maintains canonical expressions for designators under a set of equalities. Substitution is used to maintain all knowledge in terms of these canonical expressions. A partial order on designators, termed the better-name relation, is used in the choice of canonical expressions. It is shown that with an appropriate better-name relation an important engineering reasoning technique, propagation of constraints, can be implemented as a special case of this substitution process. Special purpose algebraic simplification procedures are embedded such that they interact effectively with the equality system. An electrical circuit analysis system is developed which relies upon constraint propagation and algebraic simplification as primary reasoning techniques. The reasoning is guided by a better-name relation in which referentially transparent terms are preferred to referentially opaque ones. Multiple description of subcircuits are shown to interact strongly with the reasoning mechanism.
Resumo:
This thesis explores how to represent image texture in order to obtain information about the geometry and structure of surfaces, with particular emphasis on locating surface discontinuities. Theoretical and psychophysical results lead to the following conclusions for the representation of image texture: (1) A texture edge primitive is needed to identify texture change contours, which are formed by an abrupt change in the 2-D organization of similar items in an image. The texture edge can be used for locating discontinuities in surface structure and surface geometry and for establishing motion correspondence. (2) Abrupt changes in attributes that vary with changing surface geometry ??ientation, density, length, and width ??ould be used to identify discontinuities in surface geometry and surface structure. (3) Texture tokens are needed to separate the effects of different physical processes operating on a surface. They represent the local structure of the image texture. Their spatial variation can be used in the detection of texture discontinuities and texture gradients, and their temporal variation may be used for establishing motion correspondence. What precisely constitutes the texture tokens is unknown; it appears, however, that the intensity changes alone will not suffice, but local groupings of them may. (4) The above primitives need to be assigned rapidly over a large range in an image.
Resumo:
The problem of achieving conjunctive goals has been central to domain independent planning research; the nonlinear constraint-posting approach has been most successful. Previous planners of this type have been comlicated, heuristic, and ill-defined. I have combined and distilled the state of the art into a simple, precise, implemented algorithm (TWEAK) which I have proved correct and complete. I analyze previous work on domain-independent conjunctive planning; in retrospect it becomes clear that all conjunctive planners, linear and nonlinear, work the same way. The efficiency of these planners depends on the traditional add/delete-list representation for actions, which drastically limits their usefulness. I present theorems that suggest that efficient general purpose planning with more expressive action representations is impossible, and suggest ways to avoid this problem.