55 resultados para Recontextualised found object
Resumo:
In macaque inferotemporal cortex (IT), neurons have been found to respond selectively to complex shapes while showing broad tuning ("invariance") with respect to stimulus transformations such as translation and scale changes and a limited tuning to rotation in depth. Training monkeys with novel, paperclip-like objects, Logothetis et al. could investigate whether these invariance properties are due to experience with exhaustively many transformed instances of an object or if there are mechanisms that allow the cells to show response invariance also to previously unseen instances of that object. They found object-selective cells in anterior IT which exhibited limited invariance to various transformations after training with single object views. While previous models accounted for the tuning of the cells for rotations in depth and for their selectivity to a specific object relative to a population of distractor objects, the model described here attempts to explain in a biologically plausible way the additional properties of translation and size invariance. Using the same stimuli as in the experiment, we find that model IT neurons exhibit invariance properties which closely parallel those of real neurons. Simulations show that the model is capable of unsupervised learning of view-tuned neurons. The model also allows to make experimentally testable predictions regarding novel stimulus transformations and combinations of stimuli.
Resumo:
Many current recognition systems use constrained search to locate objects in cluttered environments. Previous formal analysis has shown that the expected amount of search is quadratic in the number of model and data features, if all the data is known to come from a sinlge object, but is exponential when spurious data is included. If one can group the data into subsets likely to have come from a single object, then terminating the search once a "good enough" interpretation is found reduces the expected search to cubic. Without successful grouping, terminated search is still exponential. These results apply to finding instances of a known object in the data. In this paper, we turn to the problem of selecting models from a library, and examine the combinatorics of determining that a candidate object is not present in the data. We show that the expected search is again exponential, implying that naﶥ approaches to indexing are likely to carry an expensive overhead, since an exponential amount of work is needed to week out each of the incorrect models. The analytic results are shown to be in agreement with empirical data for cluttered object recognition.
Resumo:
The inferior temporal cortex (IT) of monkeys is thought to play an essential role in visual object recognition. Inferotemporal neurons are known to respond to complex visual stimuli, including patterns like faces, hands, or other body parts. What is the role of such neurons in object recognition? The present study examines this question in combined psychophysical and electrophysiological experiments, in which monkeys learned to classify and recognize novel visual 3D objects. A population of neurons in IT were found to respond selectively to such objects that the monkeys had recently learned to recognize. A large majority of these cells discharged maximally for one view of the object, while their response fell off gradually as the object was rotated away from the neuron"s preferred view. Most neurons exhibited orientation-dependent responses also during view-plane rotations. Some neurons were found tuned around two views of the same object, while a very small number of cells responded in a view- invariant manner. For five different objects that were extensively used during the training of the animals, and for which behavioral performance became view-independent, multiple cells were found that were tuned around different views of the same object. No selective responses were ever encountered for views that the animal systematically failed to recognize. The results of our experiments suggest that neurons in this area can develop a complex receptive field organization as a consequence of extensive training in the discrimination and recognition of objects. Simple geometric features did not appear to account for the neurons" selective responses. These findings support the idea that a population of neurons -- each tuned to a different object aspect, and each showing a certain degree of invariance to image transformations -- may, as an assembly, encode complex 3D objects. In such a system, several neurons may be active for any given vantage point, with a single unit acting like a blurred template for a limited neighborhood of a single view.
Resumo:
This thesis addresses the problem of categorizing natural objects. To provide a criteria for categorization we propose that the purpose of a categorization is to support the inference of unobserved properties of objects from the observed properties. Because no such set of categories can be constructed in an arbitrary world, we present the Principle of Natural Modes as a claim about the structure of the world. We first define an evaluation function that measures how well a set of categories supports the inference goals of the observer. Entropy measures for property uncertainty and category uncertainty are combined through a free parameter that reflects the goals of the observer. Natural categorizations are shown to be those that are stable with respect to this free parameter. The evaluation function is tested in the domain of leaves and is found to be sensitive to the structure of the natural categories corresponding to the different species. We next develop a categorization paradigm that utilizes the categorization evaluation function in recovering natural categories. A statistical hypothesis generation algorithm is presented that is shown to be an effective categorization procedure. Examples drawn from several natural domains are presented, including data known to be a difficult test case for numerical categorization techniques. We next extend the categorization paradigm such that multiple levels of natural categories are recovered; by means of recursively invoking the categorization procedure both the genera and species are recovered in a population of anaerobic bacteria. Finally, a method is presented for evaluating the utility of features in recovering natural categories. This method also provides a mechanism for determining which features are constrained by the different processes present in a multiple modal world.
Resumo:
Fine-grained parallel machines have the potential for very high speed computation. To program massively-concurrent MIMD machines, programmers need tools for managing complexity. These tools should not restrict program concurrency. Concurrent Aggregates (CA) provides multiple-access data abstraction tools, Aggregates, which can be used to implement abstractions with virtually unlimited potential for concurrency. Such tools allow programmers to modularize programs without reducing concurrency. I describe the design, motivation, implementation and evaluation of Concurrent Aggregates. CA has been used to construct a number of application programs. Multi-access data abstractions are found to be useful in constructing highly concurrent programs.
Resumo:
A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.
Resumo:
The HMAX model has recently been proposed by Riesenhuber & Poggio as a hierarchical model of position- and size-invariant object recognition in visual cortex. It has also turned out to model successfully a number of other properties of the ventral visual stream (the visual pathway thought to be crucial for object recognition in cortex), and particularly of (view-tuned) neurons in macaque inferotemporal cortex, the brain area at the top of the ventral stream. The original modeling study only used ``paperclip'' stimuli, as in the corresponding physiology experiment, and did not explore systematically how model units' invariance properties depended on model parameters. In this study, we aimed at a deeper understanding of the inner workings of HMAX and its performance for various parameter settings and ``natural'' stimulus classes. We examined HMAX responses for different stimulus sizes and positions systematically and found a dependence of model units' responses on stimulus position for which a quantitative description is offered. Interestingly, we find that scale invariance properties of hierarchical neural models are not independent of stimulus class, as opposed to translation invariance, even though both are affine transformations within the image plane.
Resumo:
Human object recognition is generally considered to tolerate changes of the stimulus position in the visual field. A number of recent studies, however, have cast doubt on the completeness of translation invariance. In a new series of experiments we tried to investigate whether positional specificity of short-term memory is a general property of visual perception. We tested same/different discrimination of computer graphics models that were displayed at the same or at different locations of the visual field, and found complete translation invariance, regardless of the similarity of the animals and irrespective of direction and size of the displacement (Exp. 1 and 2). Decisions were strongly biased towards same decisions if stimuli appeared at a constant location, while after translation subjects displayed a tendency towards different decisions. Even if the spatial order of animal limbs was randomized ("scrambled animals"), no deteriorating effect of shifts in the field of view could be detected (Exp. 3). However, if the influence of single features was reduced (Exp. 4 and 5) small but significant effects of translation could be obtained. Under conditions that do not reveal an influence of translation, rotation in depth strongly interferes with recognition (Exp. 6). Changes of stimulus size did not reduce performance (Exp. 7). Tolerance to these object transformations seems to rely on different brain mechanisms, with translation and scale invariance being achieved in principle, while rotation invariance is not.
Resumo:
In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well. The motivation for developing a component based approach is two fold: first, to enhance the performance of person detection systems on frontal and rear views of people and second, to develop a framework that directly addresses the problem of detecting people who are partially occluded or whose body parts blend in with the background. The data classification is handled by several support vector machine classifiers arranged in two layers. This architecture is known as Adaptive Combination of Classifiers (ACC). The system performs very well and is capable of detecting people even when all components of a person are not found. The performance of the system is significantly better than a full body person detector designed along similar lines. This suggests that the improved performance is due to the components based approach and the ACC data classification structure.
Resumo:
We consider the problem of matching model and sensory data features in the presence of geometric uncertainty, for the purpose of object localization and identification. The problem is to construct sets of model feature and sensory data feature pairs that are geometrically consistent given that there is uncertainty in the geometry of the sensory data features. If there is no geometric uncertainty, polynomial-time algorithms are possible for feature matching, yet these approaches can fail when there is uncertainty in the geometry of data features. Existing matching and recognition techniques which account for the geometric uncertainty in features either cannot guarantee finding a correct solution, or can construct geometrically consistent sets of feature pairs yet have worst case exponential complexity in terms of the number of features. The major new contribution of this work is to demonstrate a polynomial-time algorithm for constructing sets of geometrically consistent feature pairs given uncertainty in the geometry of the data features. We show that under a certain model of geometric uncertainty the feature matching problem in the presence of uncertainty is of polynomial complexity. This has important theoretical implications by demonstrating an upper bound on the complexity of the matching problem, an by offering insight into the nature of the matching problem itself. These insights prove useful in the solution to the matching problem in higher dimensional cases as well, such as matching three-dimensional models to either two or three-dimensional sensory data. The approach is based on an analysis of the space of feasible transformation parameters. This paper outlines the mathematical basis for the method, and describes the implementation of an algorithm for the procedure. Experiments demonstrating the method are reported.
Resumo:
We report a series of psychophysical experiments that explore different aspects of the problem of object representation and recognition in human vision. Contrary to the paradigmatic view which holds that the representations are three-dimensional and object-centered, the results consistently support the notion of view-specific representations that include at most partial depth information. In simulated experiments that involved the same stimuli shown to the human subjects, computational models built around two-dimensional multiple-view representations replicated our main psychophysical results, including patterns of generalization errors and the time course of perceptual learning.
Resumo:
A scheme for recognizing 3D objects from single 2D images is introduced. The scheme proceeds in two stages. In the first stage, the categorization stage, the image is compared to prototype objects. For each prototype, the view that most resembles the image is recovered, and, if the view is found to be similar to the image, the class identity of the object is determined. In the second stage, the identification stage, the observed object is compared to the individual models of its class, where classes are expected to contain objects with relatively similar shapes. For each model, a view that matches the image is sought. If such a view is found, the object's specific identity is determined. The advantage of categorizing the object before it is identified is twofold. First, the image is compared to a smaller number of models, since only models that belong to the object's class need to be considered. Second, the cost of comparing the image to each model in a classis very low, because correspondence is computed once for the whoel class. More specifically, the correspondence and object pose computed in the categorization stage to align the prototype with the image are reused in the identification stage to align the individual models with the image. As a result, identification is reduced to a series fo simple template comparisons. The paper concludes with an algorithm for constructing optimal prototypes for classes of objects.
Resumo:
In order to recognize an object in an image, we must determine the best transformation from object model to the image. In this paper, we show that for features from coplanar surfaces which undergo linear transformations in space, there exist projections invariant to the surface motions up to rotations in the image field. To use this property, we propose a new alignment approach to object recognition based on centroid alignment of corresponding feature groups. This method uses only a single pair of 2D model and data. Experimental results show the robustness of the proposed method against perturbations of feature positions.
Resumo:
This paper describes the main features of a view-based model of object recognition. The model tries to capture general properties to be expected in a biological architecture for object recognition. The basic module is a regularization network in which each of the hidden units is broadly tuned to a specific view of the object to be recognized.
Resumo:
How does the brain recognize three-dimensional objects? We trained monkeys to recognize computer rendered objects presented from an arbitrarily chosen training view, and subsequently tested their ability to generalize recognition for other views. Our results provide additional evidence in favor of with a recognition model that accomplishes view-invariant performance by storing a limited number of object views or templates together with the capacity to interpolate between the templates (Poggio and Edelman, 1990).