25 resultados para Kitchen robot


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most animals have significant behavioral expertise built in without having to explicitly learn it all from scratch. This expertise is a product of evolution of the organism; it can be viewed as a very long term form of learning which provides a structured system within which individuals might learn more specialized skills or abilities. This paper suggests one possible mechanism for analagous robot evolution by describing a carefully designed series of networks, each one being a strict augmentation of the previous one, which control a six legged walking machine capable of walking over rough terrain and following a person passively sensed in the infrared spectrum. As the completely decentralized networks are augmented, the robot's performance and behavior repertoire demonstrably improve. The rationale for such demonstrations is that they may provide a hint as to the requirements for automatically building massive networks to carry out complex sensory-motor tasks. The experiments with an actual robot ensure that an essence of reality is maintained and that no critical problems have been ignored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1989 AI Lab Winter Olympics will take a slightly different twist from previous Olympiads. Although there will still be a dozen or so athletic competitions, the annual talent show finale will now be a display not of human talent, but of robot talent. Spurred on by the question, "Why aren't there more robots running around the AI Lab?", Olympic Robot Building is an attempt to teach everyone how to build a robot and get them started. Robot kits will be given out the last week of classes before the Christmas break and teams have until the Robot Talent Show, January 27th, to build a machine that intelligently connects perception to action. There is no constraint on what can be built; participants are free to pick their own problems and solution implementations. As Olympic Robot Building is purposefully a talent show, there is no particular obstacle course to be traversed or specific feat to be demonstrated. The hope is that this format will promote creativity, freedom and imagination. This manual provides a guide to overcoming all the practical problems in building things. What follows are tutorials on the components supplied in the kits: a microprocessor circuit "brain", a variety of sensors and motors, a mechanical building block system, a complete software development environment, some example robots and a few tips on debugging and prototyping. Parts given out in the kits can be used, ignored or supplemented, as the kits are designed primarily to overcome the intertia of getting started. If all goes well, then come February, there should be all kinds of new members running around the AI Lab!

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents methods for implementing robust hexpod locomotion on an autonomous robot with many sensors and actuators. The controller is based on the Subsumption Architecture and is fully distributed over approximately 1500 simple, concurrent processes. The robot, Hannibal, weighs approximately 6 pounds and is equipped with over 100 physical sensors, 19 degrees of freedom, and 8 on board computers. We investigate the following topics in depth: distributed control of a complex robot, insect-inspired locomotion control for gait generation and rough terrain mobility, and fault tolerance. The controller was implemented, debugged, and tested on Hannibal. Through a series of experiments, we examined Hannibal's gait generation, rough terrain locomotion, and fault tolerance performance. These results demonstrate that Hannibal exhibits robust, flexible, real-time locomotion over a variety of terrain and tolerates a multitude of hardware failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robots must plan and execute tasks in the presence of uncertainty. Uncertainty arises from sensing errors, control errors, and uncertainty in the geometry of the environment. The last, which is called model error, has received little previous attention. We present a framework for computing motion strategies that are guaranteed to succeed in the presence of all three kinds of uncertainty. The motion strategies comprise sensor-based gross motions, compliant motions, and simple pushing motions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redundant sensors are needed on a mobile robot so that the accuracy with which it perceives its surroundings can be increased. Sonar and infrared sensors are used here in tandem, each compensating for deficiencies in the other. The robot combines the data from both sensors to build a representation which is more accurate than if either sensor were used alone. Another representation, the curvature primal sketch, is extracted from this perceived workspace and is used as the input to two path planning programs: one based on configuration space and one based on a generalized cone formulation of free space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planner is a formalism for proving theorems and manipulating models in a robot. The formalism is built out of a number of problem-solving primitives together with a hierarchical multiprocess backtrack control structure. Statements can be asserted and perhaps later withdrawn as the state of the world changes. Under BACKTRACK control structure, the hierarchy of activations of functions previously executed is maintained so that it is possible to revert to any previous state. Thus programs can easily manipulate elaborate hypothetical tentative states. In addition PLANNER uses multiprocessing so that there can be multiple loci of changes in state. Goals can be established and dismissed when they are satisfied. The deductive system of PLANNER is subordinate to the hierarchical control structure in order to maintain the desired degree of control. The use of a general-purpose matching language as the basis of the deductive system increases the flexibility of the system. Instead of explicitly naming procedures in calls, procedures can be invoked implicitly by patterns of what the procedure is supposed to accomplish. The language is being applied to solve problems faced by a robot, to write special purpose routines from goal oriented language, to express and prove properties of procedures, to abstract procedures from protocols of their actions, and as a semantic base for English.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes BUILD, a computer program which generates plans for building specified structures out of simple objects such as toy blocks. A powerful heuristic control structure enables BUILD to use a number of sophisticated construction techniques in its plans. Among these are the incorporation of pre-existing structure into the final design, pre-assembly of movable sub-structures on the table, and use of the extra blocks as temporary supports and counterweights in the course of construction. BUILD does its planning in a modeled 3-space in which blocks of various shapes and sizes can be represented in any orientation and location. The modeling system can maintain several world models at once, and contains modules for displaying states, testing them for inter-object contact and collision, and for checking the stability of complex structures involving frictional forces. Various alternative approaches are discussed, and suggestions are included for the extension of BUILD-like systems to other domains. Also discussed are the merits of BUILD's implementation language, CONNIVER, for this type of problem solving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans can effortlessly manipulate objects in their hands, dexterously sliding and twisting them within their grasp. Robots, however, have none of these capabilities, they simply grasp objects rigidly in their end effectors. To investigate this common form of human manipulation, an analysis of controlled slipping of a grasped object within a robot hand was performed. The Salisbury robot hand demonstrated many of these controlled slipping techniques, illustrating many results of this analysis. First, the possible slipping motions were found as a function of the location, orientation, and types of contact between the hand and object. Second, for a given grasp, the contact types were determined as a function of the grasping force and the external forces on the object. Finally, by changing the grasping force, the robot modified the constraints on the object and affect controlled slipping slipping motions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods are developed for predicting vibration response characteristics of systems which change configuration during operation. A cartesian robot, an example of such a position-dependent system, served as a test case for these methods and was studied in detail. The chosen system model was formulated using the technique of Component Mode Synthesis (CMS). The model assumes that he system is slowly varying, and connects the carriages to each other and to the robot structure at the slowly varying connection points. The modal data required for each component is obtained experimentally in order to get a realistic model. The analysis results in prediction of vibrations that are produced by the inertia forces as well as gravity and friction forces which arise when the robot carriages move with some prescribed motion. Computer simulations and experimental determinations are conducted in order to calculate the vibrations at the robot end-effector. Comparisons are shown to validate the model in two ways: for fixed configuration the mode shapes and natural frequencies are examined, and then for changing configuration the residual vibration at the end of the mode is evaluated. A preliminary study was done on a geometrically nonlinear system which also has position-dependency. The system consisted of a flexible four-bar linkage with elastic input and output shafts. The behavior of the rocker-beam is analyzed for different boundary conditions to show how some limiting cases are obtained. A dimensional analysis leads to an evaluation of the consequences of dynamic similarity on the resulting vibration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A closed-form solution formula for the kinematic control of manipulators with redundancy is derived, using the Lagrangian multiplier method. Differential relationship equivalent to the Resolved Motion Method has been also derived. The proposed method is proved to provide with the exact equilibrium state for the Resolved Motion Method. This exactness in the proposed method fixes the repeatability problem in the Resolved Motion Method, and establishes a fixed transformation from workspace to the joint space. Also the method, owing to the exactness, is demonstrated to give more accurate trajectories than the Resolved Motion Method. In addition, a new performance measure for redundancy control has been developed. This measure, if used with kinematic control methods, helps achieve dexterous movements including singularity avoidance. Compared to other measures such as the manipulability measure and the condition number, this measure tends to give superior performances in terms of preserving the repeatability property and providing with smoother joint velocity trajectories. Using the fixed transformation property, Taylor's Bounded Deviation Paths Algorithm has been extended to the redundant manipulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research aims to understand the fundamental dynamic behavior of servo-controlled machinery in response to various types of sensory feedback. As an example of such a system, we study robot force control, a scheme which promises to greatly expand the capabilities of industrial robots by allowing manipulators to interact with uncertain and dynamic tasks. Dynamic models are developed which allow the effects of actuator dynamics, structural flexibility, and workpiece interaction to be explored in the frequency and time domains. The models are used first to explain the causes of robot force control instability, and then to find methods of improving this performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are investigating how to program robots so that they learn from experience. Our goal is to develop principled methods of learning that can improve a robot's performance of a wide range of dynamic tasks. We have developed task-level learning that successfully improves a robot's performance of two complex tasks, ball-throwing and juggling. With task- level learning, a robot practices a task, monitors its own performance, and uses that experience to adjust its task-level commands. This learning method serves to complement other approaches, such as model calibration, for improving robot performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This robot has low natural frequencies of vibration. Insights into the problems of designing joint and link flexibility are discussed. The robot has three flexible rotary actuators and two flexible, interchangeable links, and is controlled by three independent processors on a VMEbus. Results from experiments on the control of residual vibration for different types of robot motion are presented. Impulse prefiltering and slowly accelerating moves are compared and shown to be effective at reducing residual vibration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robots must act purposefully and successfully in an uncertain world. Sensory information is inaccurate or noisy, actions may have a range of effects, and the robot's environment is only partially and imprecisely modeled. This thesis introduces active randomization by a robot, both in selecting actions to execute and in focusing on sensory information to interpret, as a basic tool for overcoming uncertainty. An example of randomization is given by the strategy of shaking a bin containing a part in order to orient the part in a desired stable state with some high probability. Another example consists of first using reliable sensory information to bring two parts close together, then relying on short random motions to actually mate the two parts, once the part motions lie below the available sensing resolution. Further examples include tapping parts that are tightly wedged, twirling gears before trying to mesh them, and vibrating parts to facilitate a mating operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distributed method for mobile robot navigation, spatial learning, and path planning is presented. It is implemented on a sonar-based physical robot, Toto, consisting of three competence layers: 1) Low-level navigation: a collection of reflex-like rules resulting in emergent boundary-tracing. 2) Landmark detection: dynamically extracts landmarks from the robot's motion. 3) Map learning: constructs a distributed map of landmarks. The parallel implementation allows for localization in constant time. Spreading of activation computes both topological and physical shortest paths in linear time. The main issues addressed are: distributed, procedural, and qualitative representation and computation, emergent behaviors, dynamic landmarks, minimized communication.