2 resultados para water source
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
The eutrophication (cultural or anthropogenic) is induced by man and can have different origins, such as domestic sewage, industrial and agricultural activities, including the effluent still breeding systems of aquatic organisms. The expansion of aquaculture, with production of biomass and increase of nutrients in water may cause acceleration of productivity of algae, changing the ecology of aquatic systems. In addition, these waste water may present a risk to health through the transfer of pathogens from manure, plant residues, composted material, among others that are major sources of organic waste in some farming systems. Depending on the trophic level of fish ponds, which are dynamic environments, different planktonic species with short reproductive cycle and adapted to the changes contained in these systems can appear in high abundance. Water quality in the systems for raising fish is related to several factors, such as water source, management (liming, fertilizing, cleaning), cultivated species and quantity and composition of exogenous food. In order to minimize environmental impacts, there are techniques to improve the quality of water in fish farming systems and thus satisfactory answers can be obtained through the application of management practices. This paper aims to review the subject that deals with changes in water quality resulting from the activity of freshwater fish culture in Brazil. Search also recommend techniques of good management practices to minimize the impact generated by the activity.
Resumo:
We evaluated the water characteristics and particle sedimentation in Macrobrachium amazonicum (Heller 1862) grow-out ponds supplied with a high inflow of nutrient-rich water. Prawns were subject to different stocking and harvesting strategies: upper-graded juveniles, lower-graded juveniles, non-graded juveniles + selective harvesting and traditional farming (non-grading juveniles and total harvest only). Dissolved oxygen, afternoon N-ammonia and N-nitrate and soluble orthophosphate were lower in the ponds in comparison with inflow water through the rearing cycle. Ponds stocked with the upper population fraction of graded prawns showed higher turbidity, total suspended solids and total Kjeldahl nitrogen than the remaining treatments. An increase in the chemical oxygen demand:biochemical oxygen demand ratio from inlet (4.9) to pond (7.1-8.0) waters indicated a non-readily biodegradable fraction enhancement in ponds. The sedimentation mean rate ranged from 0.08 to 0.16 mm day(-1) and sediment contained >80% of organic matter. The major factors affecting pond ecosystem dynamic were the organic load (due to primary production and feed addition) and bioturbation caused by stocking larger animals. Data suggest that M. amazonicum grow-out in ponds subjected to a high inflow of nutrient-rich water produce changes in the water properties, huge accumulation of organic sediment at the pond bottom and non-readily biodegradable material in the water column. However, the water quality remains suitable for aquaculture purposes. Therefore, nutrient-rich waters, when available, may represent a source of unpaid nutrients, which may be incorporated into economically valued biomass if managed properly.