2 resultados para polycyclic aromatic hydrocarbon

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background, aim, and scope Contaminated sediments are a worldwide problem, and mobilization of contaminants is one of the most critical issues in environmental risk assessment insofar as dredging projects are concerned. The investigation of how toxic compounds are mobilized during dredging operations in the channel of the Port of Santos, Brazil, was conducted in an attempt to assess changes in the bioavailability and toxicity of these contaminants.Materials and methods Bulk sediment samples and their interstitial waters and elutriates were subjected to chemical evaluation and ecotoxicological assessment. Samples were collected from the channel before dredging, from the dredge's hopper, and from the disposal site and its surroundings.Results The results indicate that the bulk sediments from the dredging site are contaminated moderately with As, Pb, and Zn and severely with Hg, and that polycyclic aromatic hydrocarbon (PAH) concentrations are relatively high. Our results also show a 50% increase in PAH concentrations in suspended solids in the water collected from the hopper dredge. This finding is of great concern, since it refers to the dredge overflow water which is pumped back into the ecosystem. Acute toxicity tests on bulk sediment using the amphipod Tiburonella viscana showed no toxicity, while chronic tests with the sea urchin Lytechinus variegatus showed toxicity in the interstitial waters and elutriates. Results are compared with widely used sediment quality guidelines and with a sediment quality assessment scheme based on various lines of evidence.Conclusions The data presented here indicate that the sediments collected in this port show a certain degree of contamination, especially those from the inner part of the channel. The classification established in this study indicated that sediments from the dredged channel are impacted detrimentally and that sea disposal may disperse contaminants. According to this classification, the sediments are inappropriate for disposal at sea. It should be emphasized that the poor quality of fine sediments discharged from the hopper dredge in the overflow process can recontaminate the environment.Recommendations and perspectives These findings will help to underpin improved planning of management strategies for dredging operations and sediment disposal in Brazil and other countries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to provide the first biomonitoring integrating biomarkers and bioaccumulation data in São Paulo coast, Brazil and, for this purpose, a battery of biomarkers of defense mechanisms was analyzed and linked to contaminants' body burden in a weigh-of-evidence approach. The brown mussel Perna perna was selected to be transplanted from a farming area (Caraguatatuba) to four possibly polluted sites: Engenho D'Agua, DTCS (Dutos e Terminais do Centro-Oeste de São Paulo) oil terminal (Sao Sebastiao zone), Palmas Island, and Itaipu (It; Santos Bay zone). After 3 months of exposure in each season, mussels were recollected and the cytochrome P4501A (CYP1A)- and CYP3A-like activities, glutathione-S-transferase and antioxidants enzymes (catalase, glutathione peroxidase, and glutathione reductase) were analyzed in gills. The concentrations of polycyclic aromatic hydrocarbons, linear alkylbenzenes, and nonessential metals (Cr, Cd, Pb, and Hg) in whole tissue were also analyzed and data were linked to biomarkers' responses by multivariate analysis (principal component analysisfactor analysis). A representation of estimated factor scores was performed to confirm the factor descriptions and to characterize the studied stations. Biomarkers exhibited most significant alterations all year long in mussels transplanted to It, located at Santos Bay zone, where bioaccumulation of organic and inorganic compounds was detected. This integrated approach using transplanted mussels showed satisfactory results, pointing out differences between sites, seasons, and critical areas, which could be related to land-based contaminants' sources. The influence of natural factors and other contaminants (e.g., pharmaceuticals) on biomarkers' responses are also discussed. (C) 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.