2 resultados para peat decomposition
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
In this work humic substances (HS) extracted from non-flooded (Araca) and flooded (Iara) soils were characterized through the calculation of stability and activation energies associated with the dehydration and thermal decomposition of HS using TGA and DTA, electronic paramagnetic resonance and C/H, C/N and C/O atomic ratios. For HS extracted from flooded soils, there was evidence for the influence of humidity on the organic matter humification process. Observations of thermal behaviour, with elemental analysis, indicated the presence of fossilized organic carbon within clay particles, which only decomposed above 800 C. This characteristic could explain the different thermal stability and pyrolysis activation energies for Iara HS compared to Araca HS.
Resumo:
Improved agricultural productivity, and reduction of environmental impacts, require studies of the interactions between different soil components. Fertilizers marketed as "organic" or "natural", such as peats or humic substances (HS) extracted from peats, are enriched with macro and micronutrients that, according to the manufacturers, are released to the plant in accordance with its needs. This work investigates the complexation capacity of HS for macro and micronutrient metal species, considering the competition, for HS complexation sites, between non-essential metals (aluminium and lead), present in the soil, and the nutrients. Humic substances were found to possess strong affinities for Pb(II) and Al(III), forming stable complexes, with concomitant release of complexed nutrients. Although HS are already used commercially as organic fertilizers, further studies of methods of HS enrichment, aimed at avoiding losses, are highly desirable from environmental and economic perspectives. (C) 2009 Elsevier B.V. All rights reserved.