5 resultados para neurotoxic esterase
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
Secretory phospholipases A(2) (sPLA(2)) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA2 from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA(2) tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA(2) administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA(2)s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA(2) inhibition.
Resumo:
Flavonoids are potent anti-inflammatory compounds isolated from several plant extracts, and have been used experimentally against inflammatory processes. In this work, a PLA(2) isolated from the Crotalus durissus cascavella venom and rat paw oedema were used as a model to. study the effect of flavonoids on PLA(2). We observed that a treatment of PLA(2) with morin induces several modifications in the aromatic amino acids, with accompanying changes in its amino acid composition. In addition, results from circular dichroism spectroscopy and UV scanning revealed important structural modifications. Concomitantly, a considerable decrease in the enzymatic and antibacterial activities was observed, even though anti-inflammatory and neurotoxic activities were not affected. These apparent controversial results may be an indication that PLA(2) possess a second pharmacological site which does not affect or depend on the enzymatic activity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In the present article we report on the biological characterization and amino acid sequence of a new basic Phospholipases A(2) (PLA(2)) isolated from the Crotalus durissus collilineatus venom (Cdcolli F6), which showed the presence of 122 amino acid residues with a pI value of 8.3, molecular mass of 14 kDa and revealed an amino acid sequence identity of 80% with crotalic PLA(2)s such as Mojave B, Cdt F15, and CROATOX. This homology, however, dropped to 50% if compared to other sources of PLA(2)s such as from the Bothrops snake venom. Also, this PLA(2) induced myonecrosis, although this effect was lower than that of BthTx-I or whole crotoxin and it was able to induce a strong blockage effect on the chick biventer neuromuscular preparation, independently of the presence of the acid subunid (crotapotin). The neurotoxic effect was strongly reduced by pre-incubation with heparin or with anhydrous acetic acid and rho-BPB showed a similar reduction. The rho-BPB did not reduce significantly the myotoxic activity induced by the PLA(2), but the anhydrous acetic acid treatment and the pre-incu-bation of PLA(2) with heparin reduced significantly its effects. This protein showed a strong antimicrobial activity against Xanthomonas axonopodis passiflorae (Gram-negative), which was drastically reduced by incubation of this PLA(2) with rho-BPB, but this effect was marginally reduced after treatment with anhydrous acetic acid. Our findings here allow to speculate that basic amino acid residues on the C-terminal and molecular regions near catalytic site regions such as Calcium binding loop or rho-wing region may be involved in the binding of this PLA(2) to the molecular receptor to induce the neurotoxic effect. The bactericidal effect, however, was completely dependent on the enzymatic activity of this protein.
Resumo:
As polyphenolic compounds isolated from plants extracts, flavonoids have been applied to various pharmaceutical uses in recent decades due to their anti-inflammatory, cancer preventive, and cardiovascular protective activities. In this study, we evaluated the effects of the flavonoid quercetin on Crotalus durissus terrificus secretory phospholipase A2 (sPLA2), an important protein involved in the release of arachidonic acid from phospholipid membranes. The protein was chemically modified by treatment with quercetin, which resulted in modifications in the secondary structure as evidenced through circular dichroism. In addition, quercetin was able to inhibit the enzymatic activity and some pharmacological activities of sPLA2, including its antibacterial activity, its ability to induce platelet aggregation, and its myotoxicity by approximately 40%, but was not able to reduce the inflammatory and neurotoxic activities of sPLA2. These results suggest the existence of two pharmacological sites in the protein, one that is correlated with the enzymatic site and another that is distinct from it. We also performed molecular docking to better understand the possible interactions between quercetin and sPLA2. Our docking data showed the existence of hydrogen-bonded, polar interactions and hydrophobic interactions, suggesting that other flavonoids with similar structures could bind to sPLA2. Further research is warranted to investigate the potential use of flavonoids as sPLA2 inhibitors. (C) 2010 Elsevier B.V. All rights reserved.