3 resultados para acid hydrolysis of chitosan

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of post-consumer poly(ethylene terephthalate) with aqueous solutions of sulfuric acid 7.5M was investigated in terms of temperature, time and particle size. The reaction extent reached 80% in four days at 100 degrees C and 90% in 5 hours at 135 degrees C. TPA obtained was purified and considered in the same level of quality of the commercial one after tests of elemental analysis, particle size and color. It was concluded that the hydrolysis occurred preferentially at the chain ends and superficially, having as controller mechanism the acid diffusion into the polymer structure. The shrinking-core model can explain the reaction kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of nanoparticles in food packaging has been proposed on the basis that it could improve protection of foods by, for example, reducing permeation of gases, minimizing odor loss, and increasing mechanical strength and thermal stability. Consequently, the impacts of such nanoparticles on organisms and on the environment need to be investigated to ensure their safe use. In an earlier study, Moura and others (2008a) described the effect of addition of chitosan (CS) and poly(methacrylic acid) (PMAA) nanoparticles on the mechanical properties, water vapor, and oxygen permeability of hydroxypropyl methylcellulose films used in food packaging. Here, the genotoxicity of different polymeric CS/PMAA nanoparticles (size 60, 82, and 111 nm) was evaluated at different concentration levels, using the Allium cepa chromosome damage test as well as cytogenetic tests employing human lymphocyte cultures. Test substrates were exposed to solutions containing nanoparticles at polymer mass concentrations of 1.8, 18, and 180 mg/L. Results showed no evidence of DNA damage caused by the nanoparticles (no significant numerical or structural changes were observed), however the 82 and 111 nm nanoparticles reduced mitotic index values at the highest concentration tested (180 mg/L), indicating that the nanoparticles were toxic to the cells used at this concentration. In the case of the 60 nm CS/PMAA nanoparticles, no significant changes in the mitotic index were observed at the concentration levels tested, indicating that these particles were not toxic. The techniques used show promising potential for application in tests of nanoparticle safety envisaging the future use of these materials in food packaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective was to evaluate amino acid composition of silages produced from three raw materials. Commercial marine fish waste, commercial freshwater fish waste, and tilapia filleting residue were used to produce fish silage by acid digestion (20 ml/kg formic acid and 20 ml/kg sulfuric acid) and anaerobic fermentation (50 g/kg Lactobacillus plantarum, 150 g/kg sugar cane molasses). Protein content and amino acid composition were determined for raw materials and silage. Marine fish waste had higher crude protein content (776.7 g/kg) compared to freshwater fish waste (496.2 g/kg) and tilapia filleting residue (429.9 g/kg). All silages lacked up to three amino acids for each product according to FAO standards for essential amino acids. However, considering as the limiting factor only the amino acids below the 30% minimum requirement for fish in general, all products were satisfactory with respect to essential amino acids. Therefore, the results suggest that all products investigated are appropriate for use in balanced fish diets. (C) 2003 Elsevier B.V. B.V. All rights reserved.