4 resultados para YEAST MITOCHONDRIA

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A yeast strain (CBS 8902) was isolated from the nest of a leaf-cutting ant and was shown to be related to Cryptococcus humicola. Sequencing of the D1/D2 region of the 26S ribosomal DNA and physiological characterization revealed a separate taxonomic position. A novel species named Cryptococcus haglerorum is proposed to accommodate strain CBS 8902 that assimilates n-hexadecane and several benzene compounds. Physiological characteristics distinguishing the novel species from some other members of the C. humicola complex are presented. The phylogenetic relationship of these strains to species of the genus Trichosporon Behrend is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four strains of a novel yeast species were isolated from laboratory nests of the leaf-cutting ant Atta sexdens in Brazil. Three strains were found in older sponges and one was in a waste deposit in the ant nests. Sequencing of the D1/D2 region of the large-subunit rRNA gene showed that the novel species, named Sympodiomyces attinorum sp. nov., is phylogenetically related to Sympodiomyces parvus. Unlike Sympodiomyces parvus, Sympodiomyces attinorum can ferment glucose, assimilate methyl alpha-D-glucoside, salicin and citrate, and grow at 37 degreesC, thus enabling these two species to be distinguished. Differentiation from other related species is possible on the basis of other growth characteristics. The type strain of Sympodiomyces attinorum is UNESP-S156(T) (=CBS 9734(T)=NRRL Y-27639(T)).