3 resultados para Wide Area Monitoring
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.
Resumo:
As condições de ambiente térmico e aéreo, no interior de instalações para animais, alteram-se durante o dia, devido à influência do ambiente externo. Para que análises estatísticas e geoestatísticas sejam representativas, uma grande quantidade de pontos distribuídos espacialmente na área da instalação deve ser monitorada. Este trabalho propõe que a variação no tempo das variáveis ambientais de interesse para a produção animal, monitoradas no interior de instalações para animais, pode ser modelada com precisão a partir de registros discretos no tempo. O objetivo deste trabalho foi desenvolver um método numérico para corrigir as variações temporais dessas variáveis ambientais, transformando os dados para que tais observações independam do tempo gasto durante a aferição. O método proposto aproximou os valores registrados com retardos de tempo aos esperados no exato momento de interesse, caso os dados fossem medidos simultaneamente neste momento em todos os pontos distribuídos espacialmente. O modelo de correção numérica para variáveis ambientais foi validado para o parâmetro ambiental temperatura do ar, sendo que os valores corrigidos pelo método não diferiram pelo teste Tukey, a 5% de probabilidade dos valores reais registrados por meio de dataloggers.
Resumo:
This study aimed to provide the first biomonitoring integrating biomarkers and bioaccumulation data in São Paulo coast, Brazil and, for this purpose, a battery of biomarkers of defense mechanisms was analyzed and linked to contaminants' body burden in a weigh-of-evidence approach. The brown mussel Perna perna was selected to be transplanted from a farming area (Caraguatatuba) to four possibly polluted sites: Engenho D'Agua, DTCS (Dutos e Terminais do Centro-Oeste de São Paulo) oil terminal (Sao Sebastiao zone), Palmas Island, and Itaipu (It; Santos Bay zone). After 3 months of exposure in each season, mussels were recollected and the cytochrome P4501A (CYP1A)- and CYP3A-like activities, glutathione-S-transferase and antioxidants enzymes (catalase, glutathione peroxidase, and glutathione reductase) were analyzed in gills. The concentrations of polycyclic aromatic hydrocarbons, linear alkylbenzenes, and nonessential metals (Cr, Cd, Pb, and Hg) in whole tissue were also analyzed and data were linked to biomarkers' responses by multivariate analysis (principal component analysisfactor analysis). A representation of estimated factor scores was performed to confirm the factor descriptions and to characterize the studied stations. Biomarkers exhibited most significant alterations all year long in mussels transplanted to It, located at Santos Bay zone, where bioaccumulation of organic and inorganic compounds was detected. This integrated approach using transplanted mussels showed satisfactory results, pointing out differences between sites, seasons, and critical areas, which could be related to land-based contaminants' sources. The influence of natural factors and other contaminants (e.g., pharmaceuticals) on biomarkers' responses are also discussed. (C) 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.