2 resultados para THERMAL ANALYSIS METHODS
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
This paper reports an investigation on the effect of thermal activation of kaolinite. It is well known that during calcinations (400-650 degrees C), kaolinite loses the OH lattice water and is transformed into metakaolinite or amorphous material. Arsenic is trace element that is toxic to animals including humans. The adsorption of arsenic on kaolinite was investigated at varying pH and thermal pretreatment. Calcination of sample is carried out at 650 degrees C for 3 h. The decomposition of kaolinite is recorded using methods of thermal analysis. The resultant product is identified by XRD. Laboratory experiments were conducted examining the effect of arsenic by thermally modified kaolinite. The Langmuir isotherm was used to describe arsenite and arsenate sorption by the calcined kaolinite. The equilibrium parameters used were based on experimental data obtained for the dynamic adsorption process of arsenic. Removal of arsenate using natural kaolinite was satisfactory, whereas arsenic was not removed by adsorption with thermally modified kaolinite. Moreover, the adsorption of arsenic by kaolinite and metakaolinite decreases with increasing pH.
Resumo:
In this work humic substances (HS) extracted from non-flooded (Araca) and flooded (Iara) soils were characterized through the calculation of stability and activation energies associated with the dehydration and thermal decomposition of HS using TGA and DTA, electronic paramagnetic resonance and C/H, C/N and C/O atomic ratios. For HS extracted from flooded soils, there was evidence for the influence of humidity on the organic matter humification process. Observations of thermal behaviour, with elemental analysis, indicated the presence of fossilized organic carbon within clay particles, which only decomposed above 800 C. This characteristic could explain the different thermal stability and pyrolysis activation energies for Iara HS compared to Araca HS.