2 resultados para Sustained-release
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
The toxicity of herbicides used in agriculture is influenced by their chemical stability, solubility, bioavailability, photodecomposition, and soil sorption. Possible solutions designed to minimize toxicity include the development of carrier systems able to modify the properties of the compounds and allow their controlled release. Polymeric poly(epsilon-caprolactone) (PCL) nanocapsules containing three triazine herbicides (ametryn, atrazine, and simazine) were prepared and characterized in order to assess their suitability as controlled release systems that could reduce environmental impacts. The association efficiencies of the herbicides in the nanocapsules were better than 84%. Assessment of stability (considering particle diameter, zeta potential, polydispersity, and pH) was conducted over a period of 270 days, and the particles were found to be stable in solution. In vitro release kinetics experiments revealed controlled release of the herbicides from the nanocapsules, governed mainly by relaxation of the polymer chains. Microscopy analyses showed that the nanocapsules were spherical, dense, and without aggregates. In the infrared spectra of the PCL nanocapsules containing herbicides, there were no bands related to the herbicides, indicating that interactions between the compounds had occurred. Genotoxicity tests showed that formulations of nanocapsules containing the herbicides were less toxic than the free herbicides. The results indicate that the use of PCL nanocapsules is a promising technique that could improve the behavior of herbicides in environmental systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND and PURPOSEThe PPAR-gamma agonist 15d-PGJ(2) is a potent anti-inflammatory agent but only at high doses. To improve the efficiency of 15d-PGJ(2), we used poly(D,L-lactide-co-glycolide) nanocapsules to encapsulate it, and function as a drug carrier system. The effects of these loaded nanocapsules (15d-PGJ(2)-NC) on inflammation induced by different stimuli were compared with those of free 15d-PGJ(2).EXPERIMENTAL APPROACHMice were pretreated (s.c.) with either 15d-PGJ(2)-NC or unloaded 15d-PGJ(2) (3, 10 or 30 mu g center dot kg-1), before induction of an inflammatory response by i.p. injection of either endotoxin (LPS), carrageenan (Cg) or mBSA (immune response).KEY RESULTSThe 15d-PGJ(2)-NC complex did not display changes in physico-chemical parameters or drug association efficiency over time, and was stable for up to 60 days of storage. Neutrophil migration induced by i.p. administration of LPS, Cg or mBSA was inhibited by 15d-PGJ(2)-NC, but not by unloaded 15d-PGJ(2). In the Cg model, 15d-PGJ(2)-NC markedly inhibited serum levels of the pro-inflammatory cytokines TNF-alpha, IL-1 beta and IL-12p70. Importantly, 15d-PGJ(2)-NC released high amounts of 15d-PGJ(2), reaching a peak between 2 and 8 h after administration. 15d-PGJ(2) was detected in mouse serum after 24 h, indicating sustained release from the carrier. When the same concentration of unloaded 15d-PGJ(2) was administered, only small amounts of 15d-PGJ(2) were found in the serum after a few hours.CONCLUSIONS and IMPLICATIONSThe present findings clearly indicate the potential of the novel anti-inflammatory 15d-PGJ(2) carrier formulation, administered systemically. The formulation enables the use of a much smaller drug dose, and is significantly more effective compared with unloaded 15d-PGJ(2).