3 resultados para Stages

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Settlement rate may not reflect larval supply to coastal waters in different marine invertebrates and demersal fishes. The importance of near-shore oceanography and behaviour of late larval stages may be underestimated. The present study conducted neustonic sampling over station grids and along full-length transects at two embayments in south-eastern Brazil to (1) compare diurnal and nocturnal occurrence of most frequent decapod stages to assess their vertical movements, (2) describe the formation of larval patches and (3) measure competence of crab megalopae according to their distance to recruitment grounds. Several shrimp species apparently undergo a diel vertical migration, swimming crab megalopae showed no vertical movements and megalopae of the intertidal crab Pachygrapsus transversus revealed a reversed vertical migration. During the day, crab megalopae aggregated in convergence zones just below surface slicks. These larvae consisted of advanced, pre-moult stages, at both mid-bay and near-shore patches. Competence, measured as the time to metamorphosis in captivity, was similar between larval patches within each taxon. Yet, subtidal portunids moulted faster to juveniles than intertidal grapsids, possibly because they were closer to settlement grounds. Megalopae of Pachygrapsus from benthic collectors moulted faster than those from bay areas. These results suggest that alternative vertical migration patterns of late megalopae favour onshore transport, and actual competence takes place very close to suitable substrates, where larvae may remain for days before settlement. Lack of correlation between larval supply and settlement for Pachygrapsus suggests that biological processes, besides onshore transport, may play an important role in determining settlement success of coastal crabs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 (+) and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, . (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP ( (M) = 0.09 +/- A 0.01 mmol L-1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ ( (0.5) = 0.91 +/- A 0.04 mmol L-1) in decapodid III than in other stages; NH4 (+) had no modulatory effect. The affinity for Na+ ( (0.5) = 13.2 +/- A 0.6 mmol L-1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 (+) obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval The NH4 (+)-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional response between ingestion rate and food concentration was determined for each larval stage of Macrobrachium rosenbergii. Artemia franciscana nauplii were supplied at 2,4, 6, 8, 10 and 12 per milliliter. The nauplii were counted by sight using a Pasteur pipette and transferred to Petri dishes containing 40 ml of brackish water (12 parts per thousand) lying on the top of black plastic. One larva at each stage was individually placed into each Petri dish containing different food density. After 24 h, each larva was removed from the Petri dish and the leftover nauplii were counted. The amount consumed was determined by the difference between the initial and final number of nauplii. Ingestion rate (I) increased as food density (P) increased and was defined by the model I=I-m(1-e(-kP)). The results suggest four levels of ingestion during larval development. The first level includes stages II, III and IV, with average maximum consumption of about 40 nauplii/day; the second level includes stages V and VI, with consumption of approximately 55 nauplii/day; the third level includes stages VII and VIII, with consumption of 80-100 nauplii/day. The fourth level includes stages IX, X and XI, in which the high values for maximum ingestion (Im) exceed the load capacity of the medium. The low values for constant k (that may correspond to the adaptability of the food to prey characteristics, such as, size, mobility, etc.) obtained for stages IX, X and XI indicated that Artemia is not an adequate prey and there is necessity of a supplementary diet. The best relationship between predator and prey seemed to occur during stage IV Results obtained in the present work may subsidize future researches and serve as a guideline for practical considerations of feeding rates. (C) 2003 Elsevier B.V. B.V. All rights reserved.